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Abstract. The novel meso-nucleo-spinics effect of the nuclear spin polarization induced peri-
odic structure creation in a low-dimensional electron system is studied theoretically. It is shown
that the periodically distributed nuclear magnetization results in the periodic hyperfine magnetic
field which, in turn, creates a periodic electron structure. The electron wave functions and energy
spectrum for such a structure are evaluated.

1. Introduction

Recent advances of semiconductor device miniaturization strengthen the need to
take into account the influence of quantum mechanical effects on device perfor-
mance since the statistical behavior of a quantum system may result in unpre-
dictable device parameter fluctuations. These problems stimulate the search for
alternative schemes for electronics and, at the same time the need to take into
account the non-classical behavior of electrons. The possibilities of controlling the
electron and nuclear spin instead of the electric charge give rise to the so-called
spintronics[1]. The coherence of quantum states plays a key role in the quan-
tum state temporal evolution. Coherent approaches to electronics and spintronics
possess two major advantages[1].

1. Interference between two coherently occupied quantum states separated by
the energy∆E can result in rapid oscillations of a spin magnetization orien-
tation with a frequencyν = ∆E/h (hereh is the Planck constant) driving
the operation of ultrafast devices and permitting to tune the device operating
frequency. Magnetic field can control electron spin precession frequencies in
semiconductors at a rate of tens of gigahertz per tesla.
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2. Interference may be used in quantum computation where nuclear or electron
spins isolated from their environment play the role of computational quantum
bits (qubits).

The electron spin qubits, however, have an essential disadvantage from the view-
point of quantum computation applications. The electron spin polarization rapidly
vanishes after the controlling signal is switched off, and for this reason the infor-
mation expressed in electron qubits cannot be stored for a sufficiently long time.
Nuclear spins, on the contrary, possess a sufficiently large relaxation timeT1, up
to several hours at low temperature[2]and can therefore be considered as the best
suitable candidates for a qubit [3]-[5]. The emerging problem of nuclear spins
manipulation and their inhomogeneous spatial distribution is of great importance.
In the absence of an external magnetic field, the hyperfine magnetic fieldBhf

caused by the magnetization of the highly polarized nuclear spins can produce a
Zeeman splitting of the conduction electron energy spectrum equivalent to the one
corresponding to an external field of several Teslas. A new class of phenomena
related to the electron behavior in mesoscopic systems under the influence of a
sufficiently strong hyperfine magnetic field due to the polarized nuclei is called
meso-nucleo-spinics[6]. The hyperfine interaction is believed to play a central role
in the possible solid state realizations of future quantum computation devices. The
main ingredients of such a prototype system are nuclear spins, or qubits, coupled
through the hyperfine interaction to a phase coherent electron spin system which
can exist in a two-dimensional electron gas (2DEG) in a doped heterostructure
[7].
Recently the modification of electron wave functions and energy spectrum in the
inhomogeneous hyperfine magnetic field has been investigated theoretically for
the case of a ring[8], quantum dot[9], and quantum wire[10]. It has been shown
that the hyperfine field induced by polarized nuclei results in the electron spin
polarization, leading to energy splitting and spatial confinement of electrons[8]-
[10]. In fact, the action of the spatially inhomogeneous hyperfine field has some
similarities with the combination of the external magnetic field and a periodic
external electrical [11] or magnetic [12] potential.
In this paper we investigate theoretically themeso-nucleo-spinicseffects in the
case of a laterally periodic hyperfine field. The main physical difference from the
previously studied cases is in the creation of a laterally periodic electron Zeeman
splitting even in the absence of an external magnetic field. The mechanism of the
chain of events can be described qualitatively as follows. The free electron spin
system can be optically polarized by an elliptically polarized light wave [2]. A
spatially inhomogeneous distribution of free electrons, or a dynamic grating, can
be created by two interfering laser beams[13]. In such a case, the optically induced
magnetization of the free electron system would also be spatially inhomogeneous
imitating the grating configuration. Optical electron spin excitation[2] and po-
larized electron spin transport[14] in semiconductor nano-structures are strongly
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coupled to the nuclear spin subsystem. The magnetization can be transferred from
electrons to nuclei due to the hyperfine interaction mechanism. The electron spin
polarization rapidly vanishes after the removal of the external radiation while the
spatially inhomogeneous magnetization of the nuclei can be stored for a suffi-
ciently large relaxation timeT1. This process may represent a writing and storage
of information. The reading of the stored information can be realized through the
creation of a free electron dynamic grating, but this time with a linearly polarized
light. The dynamic electron grating would receive the spatially inhomogeneous
magnetization from the polarized nuclei very rapidly through the same hyperfine
interaction process and it would modulate the incident light beam. We evalu-
ated the light induced hyperfine magnetic field. We solved in a closed form the
Schroedinger equation for an electron subjected to such a field. Wave functions
expressed in terms of Mathieu functions and a discrete electron energy spectrum
consisting of paths have been obtained.
The paper is constructed as follows. The hyperfine field is calculated in the sec-
ond section. The Schroedinger equation is analyzed in the third section. The
conclusions are presented in the fourth section.

2. The Light Induced Hyperfine Magnetic Field

Consider a 2DEG situated in a GaAs/AlGaAs heterostructure. We assume that
the spins of the 2DEG are optically polarized with the light intensity dynamic
grating[13]

I = I0 [1 + m cos (ky − Ωt)] (1)

whereI, I0 are the light intensity and its amplitude,m is the modulation coef-
ficient, k, Ω are the wave vector and frequency difference of the two interfering
laser beams, respectively.
The temporal evolution of the hyperfine fieldBhf is governed by two main mech-
anisms: the nuclear-spin relaxation determined by the relaxation timeT1, and the
nuclear-spin diffusion determined by the spin-diffusion coefficientD. Assuming
that the hyperfine fieldBhf does not depend on the coordinatesx, z we write for
Bhf (y, t) the one-dimensional diffusion equation[15]

∂Bhf

∂t
= D

∂2Bhf

∂y2
− Bhf

T1
(2)

Optical spin polarization methods permit the creation of one-dimensional struc-
tures of the order of magnitude of1µm[16]-[19]. The initial condition for the
hyperfine field att = 0 are assumed to be periodic in accordance with the form of
the light grating (1)

Bhf (y) = B0 [1 + m cos ky] (3)
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Then the solution of (2) is sought to be

Bhf (y, t) = Y (y) T (t) exp
(
− t

T1

)
(4)

Substituting (4) into (2) and solving together with (3) we obtain

Bhf (y, t) = B0 exp
(
− t

T1

) [
1 + (m cos ky) exp

(
− t

τ

)]
(5)

where the nuclear-spin diffusion timeτ =
(
k2D

)−1 which is rather long in
semiconductors at low temperatures[17].

3. The Electron Energy Spectrum in a Periodic Hyperfine Field

The microscopic description of the electrons in the hyperfine magnetic field is
based on the following HamiltonianH

H = − }2

2m∗∆ + V (x) + U (z) + µBσ ·Bhf (y, t) (6)

where} = h/2π, m∗ is the electron effective mass,∆ is the Laplace operator,
µB is the Bohr magneton, andσ is the electron spin. The potentialV (x) defines
the electron transmission probability through the heterojunction. In our case it is
chosen to beV (x) = V0 = const for |x| ≤ L/2 andV (x) = 0 otherwise where
L is the heterostructure width in thex direction. In such a situation the electron
transmission probabilityP = 1 and the influence ofV (x) is negligible[10]. The
dependence on thez coordinate can also be ignored under the typical assumption
that the 2DEG is filling only the lowest subband corresponding to the confinement
in thez direction[10].
Consider now the time dependence of the hyperfine field (5). The temporal scale
of both the relaxation and the diffusion processes in the nuclear spin system is
several orders of magnitude larger than the temporal scale of the processes in
the electron system at or close to equilibrium as it was mentioned above[2]. For
this reason, we suppose that the electrons are in the steady-state regime. Then,
the time-independent Schroedinger equation for the electron wave functionψ (y)
with the Hamiltonian (6) takes the form

− }2

2m∗
∂2ψ (y)

∂y2
− µBBhf (y, t) ψ (y) = Eψ (y) (7)

Here only the electrons with the spins opposite to the hyperfine field are taken into
account since the effective potential is attractive for such electrons. Substituting
the hyperfine field (5) into (7) we obtain

∂2ψ (y)
∂2y

+
2m∗

~2

[
E + µBB0 exp

(
− t

T1

) [
1 + (m cos ky) exp

(
− t

τ

)]]
ψ (y) = 0

(8)
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In GaAs/AlGaAs heterostructures a hyperfine fieldBhf of several tesla can be
achieved[20],[21] which results in the hyperfine energy splitting∼ 10−4eV . In-
troducing the dimensionless variableθ = ky/2 we obtain from equation (8)

∂2ψ (θ)
∂θ2

+
[
Ẽ − 2q cos 2θ

]
ψ (θ) = 0 (9)

where
Ẽ = 8m∗

k2~2
[
E + µBB0 exp

(
− t

T1

)]
;

q = −4m∗µBB0m

k2~2
exp

[
−

(
1
T1

+
1
τ

)
t

]
(10)

Note that usually the modulation depth of the dynamic grating is smallm ¿ 1.
Numerical estimations show that for the typical valuesm = 0.1, m∗ = 0.067me

and a maximum value of the hyperfine fieldB0 = 5 tesla|q| ∼ 1 whereme is the
free electron mass.
Equation (9) is a well-known Mathieu equation[22]. It has the solution

ψα,n (θ) = exp [i (2n + α) θ]Aν (θ) , ν = 2n + α, n = ±1,±2, ... (11)

where the periodic with a period ofπ functionsAν (θ) can be represented by the
convergent Fourier series

Aν (θ) = a
(ν)
0 +

∞∑

l=−∞
a

(ν)
l exp (2lθi) (12)

The corresponding energy spectrum can be found from the dispersion equation
[22]

sin2 πv

2
= ∆(0) sin2 π

√
Ẽ

2
(13)

where∆(0) is the infinite determinant which is too involved and it is not presented
here. The functionsψα,n (θ) are real and periodic with a periodπ for evenn
(whole-period solutions), or2π for oddn (half-period solutions) and constitute an
orthogonal system whenα is an integer. Then the functions (11) are the Floquet
solutions. There exist even and odd orthogonal eigenfunctionscen (θ), sen (θ),
and the eigenvalues̃En denotedan andbn, for the even and odd solutionscen (θ),
sen (θ), respectively [22]. The solutions are normalized:

2π∫

0

[cen (θ)]2 dθ =
2π∫

0

[sen (θ)]2 dθ = π (14)

The periodic functionscen (θ), sen (θ) can be expanded in the Fourier series.
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ce2n (θ, q) =
∞∑

r=0
A2r cos (2rθ) ;

ce2n+1 (θ, q) =
∞∑

r=0

A2r+1 cos [(2r + 1) θ] (15)

and

se2n+2 (θ, q) =
∞∑

r=0
B2r+2 sin [(2r + 2) θ] ;

se2n+1 (θ, q) =
∞∑

r=0

B2r+1 sin [(2r + 1) θ] (16)

where the coefficientsA2r, A2r+1, B2r+2, B2r+1 depend onq. The eigenvalues
q

(
Ẽ

)
define the boundary lines between the stable and unstable regions in the(

q, Ẽ
)

plane. In our case(q < 0) the relations between the eigenvalues are fol-
lowing

a0 < a1 < b1 < b2 < a2 < a3 < b3 < b4... (17)

and the stable regions correspond to the conditions

a2n ≤ Ẽ2n ≤ a2n+1, b2n+1 ≤ Ẽ2n+1 ≤ b2n+2 (18)

For largen →∞ Ẽ = n2, and the electron energy spectrum reduces to the levels
in an infinite potential well. In the case of a weak hyperfine fieldB0 . 0.5 tesla
the value of the parameter|q| ¿ 1, and the asymptotic expansions of some first
eigenvalues neglecting higher power terms have the form

a0 (q) ≈ −q2

2
; a1 (−q) = b1 (q) ≈ 1− q (19)

a2 (q) ≈ 4 +
5q2

12
; b2 (q) ≈ 4− q2

12
; a3 (−q) = b3 (q) ≈ 9− q2

16
(20)

The asymptotic expansions of the first eigenfunctions linear inq are following

ce0 (θ) ≈ 1√
2
− q

2
√

2
cos (2θ) ; ce1 (θ) ≈ cos (θ)− q

8
cos (3θ) (21)

se1 (θ) ≈ sin (θ)− q

8
sin (3θ) ; ce2 (θ) ≈ cos (2θ)− q

(
cos (4θ)

12
− 1

4

)
(22)

se2 (θ) ≈ sin (2θ)− q
sin (4θ)

12
(23)

The dependence of the ground state wave functionsce0 on time and spatial peri-
odicity is graphically illustrated in Fig.1.
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Figure 1. The time dependence of the ground state wave functionce0, at fixed magnetic field
B̃ ≡ 4m∗µBB0m

k2~2 = 0.1, heret 7→
(

1
T1

+ 1
τ

)
t, see text .

4. Conclusion

The novelmeso-nucleo-spinicseffect of the electron periodic structure creation
under the hyperfine magnetic field is predicted theoretically. The periodic dynamic
grating of two circularly polarized interfering laser beams creates a periodic dis-
tribution of polarized electron spin magnetization. This magnetization polarizes
the nuclei spins due to the electron nuclear spin interaction. The relaxation time
of the electron system is very small, and the electron spin magnetization rapidly
disappears after the light grating is switched off. The spatially periodic nuclear
spin magnetization is stored for a sufficiently large relaxation timeT1. The hyper-
fine magnetic field caused by this magnetization is spatially periodic and can be
strong enough, up to several tesla. The electron spin interaction energy in such a
field plays the role of a confining potential. The Schroedinger equation (8) reduces
to the Mathieu equation which has stable periodic solutions expressed in terms of
the even and odd Mathieu functionscen (θ), sen (θ) for a set of energy bands,
or stable regions separated by unstable regions. The boundaries of these bands
are determined by the discrete series of eigenvaluesẼn. The explicit expressions
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for the eigenfunctions and eigenvalues in the case of a weak hyperfine field are
presented. These results clearly show that information can be written, stored for a
sufficiently long time and read by using the polarized nuclear spin system.
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