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Abstract

We analyze quantitatively the accuracy of eigenfunction and eigen-
value calculations in the frame work of WKB and instanton semiclas-
sical methods. We show that to estimate the accuracy it is enough to
compare two linearly independent (with the same quantum number)
solutions to the Schrödinger equations with the potential under study,
and with the approximating piecewise smooth potential. The main
advantage of the approach is related to the appropriate choice of the
approximating potential, providing absolutely convergent majorant se-
ries for the solutions. We test our method for a strongly anharmonic
one dimensional potential, but the basic ideas inspiring our work and
its results can be applied to a large variety of interesting chemical and
physical problems which are of relevance to various molecular systems.

PACS: 05.45.-a, 72.10.-d
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1 Introduction

It is a textbook wisdom that if the de Broglie wavelengths λ of particles are
small in comparison with the characteristic space scales of a given problem,
then the problem can be treated semiclassically. The commonly used WKB
method (phase integral approach) [1—3] is intended for the conditions of
”geometrical optics”, in which the gradient of the action σ is large, but
slowly variable (this is suggested also by it containing the factor ~, since
we are dealing with a semiclassical approximation, in which ~ is taken as
small). The corresponding condition can be formulated more quantitatively
[1] as follows: λ must vary only slightly over distances of the order of itself¯̄̄̄

d(λ(x)/2π)

dx

¯̄̄̄
¿ 1 , (1)

where λ(x) = 2π~/p(x), and p(x) is a classical momentum. However, this
simple criterion is not a practical tool to estimate how accurate could be
found semiclassical solutions of particular problems, since nothing is speci-
fied regarding the convergence of the semiclassical series. The criterion (1)
does not work to estimate the magnitude of the error involved in the approx-
imate calculation of physical quantities (e.g., matrix elements), neither to
find the domain of validity in the complex plane in which the semiclassical
solutions are defined. Indeed from (1) one can conclude only that higher
order corrections to semiclassical wave functions are small in the asymptotic
regions, but this mathematical criterion has almost nothing to do with say
the physical accuracy of semiclassical matrix elements which depends on the
wave function accuracy in space regions providing main contributions into
the matrix elements under consideration. For example, the energy eigenval-
ues are determined by the asymptotical region of the linear turning points
(i.e., the region distant from these points), and as well by the proximity
region to the second order turning points, since in the both regions the wave
functions possess the largest values.

Within the WKB method such kind of a physical accuracy estimation
has been performed long ago by N. and P.O. Fröman [4]. They analyzed
higher order corrections to the semiclassical wave functions and found that
although those are really small over 1/γ2 (γ À 1 is semiclassical parame-
ter), the corrections are proportional to the factor [(E/γ) − U ]−2, (where
E is energy and U is potential), and thus the function has non-integrable
singularity at the linear turning points where [(E/γ) − U ] = 0 (or, within
the alternative to WKB semiclassical formalism so-called extreme tunnel-
ing trajectory or instanton approach [5—13] the corrections are singular in
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the second order turning points). To surmount this problem in [4] (see also
[14], and [15]) the analytical continuation of the correction function into the
complex plane has been proposed, and it gives impractically bulky expres-
sions even for simple model potentials. Since this problem has relevance far
beyond WKB treatment of a particular model potential, this is an issue of
general interest to develop a simple and convenient in practice quantitative
method to study the accuracy of the semiclassical approach, and it is the im-
mediate motivation of the present paper to develop a systematic procedure
how to do it.

The idea of our approach is to construct two linearly independent con-
tinuous (with continuous first derivatives) approximate solutions to the
Schrödinger equation, which in the asymptotic region coincide with semi-
classic solutions, and in the vicinity of the turning points - with the exact
solutions of the so-called comparison equation (i.e. the exact solution of
the Schrödinger equation for the chosen appropriately approximate near the
turning points potentials Vc(X), henceforth will be referred to as the com-
parison potential). Although, scanning the literature we found one rather
old paper [16] with a similar comparison equation approach, but our accu-
racy criterion is formulated as the majorant inequalities for a certain matrix
(which we find in the explicit analytical form and calculated numerically)
connecting our approximate and exact solutions in the finite space inter-
val (not only in the vicinity of the turning points). Since this method has
largely gone unnoticed in the study of semiclassics, we found it worthwhile
to present its derivation in a short and explicit form, and also to point out
its practical usability.

The remainder of this paper is organized as follows. In Sect. 2 we present
the basic expressions necessary for our investigation. In this section we also
present the main steps and qualitative idea of our method. Sect. 3 contains
our results. We derive the inequalities which enable us to find the finite
space interval (not at the isolated points) where the solutions have to be
matched, and calculate the 2 × 2 coordinate dependent matrix connecting
the approximate and exact solutions. Since the semiclassical solutions of
the harmonic potential coincide with the exact solutions, the accuracy of
any semiclassically treated problem depends crucially on its potential energy
anharmonicity. That is why as the touchstone to test our method the results
presented in the Sect. 3 are applied to an anharmonic oscillator in Sect. 4.
We end with some brief conclusions in the same section.
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2 Semiclassical equations in the WKB and instan-
ton forms

Technically the basic idea how to overcome the difficulty of the semiclassical
solutions in the vicinity of the turning points is reduced to an appropriate
(admitting exact analytic solutions) approximation of the potential near the
turning points. After that step one has to match the asymptotics of this
exact solution to the Schrödinger equation for an approximate potential
with the semiclassical solutions to the Schrödinger equation for the potential
under consideration (i.e. approximate solutions of the exact potential) far
from the turning points. To illustrate main ideas of any semiclassic method
(and to retain compactness and transparency of expressions) we discuss here
a one dimensional case. As it is well known [1] in the WKB method solutions
to the Schrödinger equation are sought in the form

ψ = A exp

µ
iσ

~

¶
, (2)

where for the function σ called action the one particle Schrödinger equation
(traditionally termed as Hamilton - Jacoby equation) reads as

1

2m

µ
∂σ

∂x

¶2
= E − U , (3)

where m is a particle mass, E is its energy, and U is external field potential.
Since the system is supposed quasi-classical in its properties, we seek σ in
the form of a series expanded in powers of ~. Depending on normalization
prefactor A(x) entering (2) can be also found but the corresponding equation
(referred traditionally as transport equation) plays a pure passive role since
it is fully determined by the action σ found as the solution of the Hamilton -
Jacoby equation

− i~
m

·
1

2

∂2σ

∂x2
A+

∂A

∂x

∂σ

∂x

¸
+
~2

2m

∂2A

∂x2
= 0 , (4)

where in the spirit of the semiclassical approximation the last term (∝ ~2)
is neglected. Technically of course more convenient to use instead of ~ an
expansion over equivalent but dimensionless parameter γ−1 ¿ 1 we will call
in what follows as semiclassical parameter and define as

γ ≡ mΩ0a
2
0

~
À 1 , (5)
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where a0 is a characteristic length of the problem, e.g. the tunneling dis-
tance, Ω0 is a characteristic frequency, e.g. the oscillation frequency around
the potential minimum. Evidently the semiclassical parameter γ À 1, and
by its physical meaning it is determined by the ratio of the characteristic po-
tential scale over the zero oscillation energy. We put ~ = 1, and use Ω0 and
a0 to set corresponding dimensionless scales, i.e. we introduce dimension-
less energy � ≡ E/γΩ0, dimensionless coordinate X ≡ x/a0, dimensionless
potential V ≡ U/Ω0 (except where explicitely stated to the contrary and
dimensions are necessary for understanding or numerical estimations).

The analogous to (2), (3) procedure for the Schrödinger equation in the
imaginary time (instanton formalism, corresponding to the Wick rotation in
the phase space, when coordinates remain real valued x→ x but conjugated
momenta become imaginary px → ipx) can be formulated as the following
substitution for the wave function (cf. to (2))

ψ = AE(X) exp(−γσE) , (6)

where the action σE and we use the subscript E to denote so-called Euclidean
action obtained from the WKB action σ after the Wick rotation. Performed
above rotation is not a harmless change of variables. The deep meaning of
this transformation within the instanton approach is related to redistribu-
tion of different terms between the Hamilton - Jacoby and the transport
equations. Indeed, like that is in the WKB method, eigenvalues for the
ground and for the low-lying states are of the order of γ0, while all other
terms in (3) are of the order of γ1. Therefore to perform a regular expansion
over γ−1 for the substitution (6) one has to remove the energy term from
the Hamilton - Jacoby equation, and to include this term into the transport
equation. Besides in the first order over γ−1 one can neglect the term with
the second derivative of the prefactor. As a result of this redistributions the
both equations are presented as

1

2

µ
∂σE
∂X

¶2
= V (X) , (7)

instead of the WKB Hamilton - Jacoby equation (3), and the transport
equation is

∂AE

∂X

∂σE
∂X

+
1

2

∂2σE
∂X2

AE = �AE . (8)

One can easily note by a simple inspection of the WKB (3), (4) and of the
instanton (7), (8) equations that although the both semiclassical methods
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can be formulated neglecting terms of the order of γ−1, therefore possessing
the same accuracy over γ−1, the solutions evidently coincide in the asymp-
totic classically forbidden region V (X) À �/γ, but their behavior, number
and type of turning points (where any semiclassic approximation does not
work) are quite different. For example in the WKB formalism there are two
turning points where V (X) − (�/γ) = 0 around each minimum of the po-
tential, while in the instanton approach since the energy does not enter the
Hamilton - Jacoby equation (thus one can say that there are no classically
accessible regions at all) the turning points are extremal points (minima for
the case) of the potential. Furthermore as a consequence of this difference,
in the WKB method all turning points are linear, whereas in the instanton
approach they are second order (quadratic over X).

3 Accuracy of semiclassical approximation

Armed with this knowledge we are in the position now to construct our
approximants. Let us introduce besides the comparison potential Vc(X),
one more specially chosen potential Vsc (henceforth will be referred to as
the semiclassical potential). This potential is chosen by the requirement
that the exact solutions to the Schrödinger equation with Vsc coincide as-
ymptotically with the semiclassical solutions to the Schrödinger equation
with the potential V (X) the problem under study. Thus according to the
construction, the semiclassical wave function Ψsc satisfies the equation

Ψ−1sc
d2Ψsc

dX2
= 2γ2

µ
Vsc(X)− �

γ

¶
, (9)

and from here we can relate the semiclassical potential (Vsc(X)) with the
bare one (V (X))

V (1,2)sc = V (X)∓ 1

2γ2
A−1

µ
d2A

dX2

¶
, (10)

in the vicinity of the first order or of the second order (superscripts 1 or 2)
turning points.

Since near the turning point X0 the prefactors A(1) ∝ |X−X0|−1/4, and
A(2) ∝ (X − X0)

n (where n is an integer number which occurs from the
transport equation (8) solution at the energy � = n + (1/2)) the potential
V
(1)
sc at X → X0 is singular and negative, and V

(2)
sc has the same singularity

(∝ (X−X0)
−2) but positive. The difference is due to the fact that near the
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WKB linear turning points we have to deal with the V (1)sc well, whereas near
the second order instanton turning points one has to treat the potential
barrier V (2)sc . It might be useful to illustrate the essential features of the
introduced above potentials Vc and Vsc applying the definition (10) to a
simple (but the generic touchstone) example of the following anharmonic
oscillator

V (X) =
1

2
[X2 + αX3 + βX4] . (11)

We show in Fig. 1 the semiclassical and the comparison potentials associated
with (11) for the WKB (Fig. 1a) and instanton (Fig. 1b) methods (α =
−1.25, β = 0.5, and the energy window corresponds to n = 3 excited state
of the potential (11)).

The key elements to construct our approximants are the following com-
binations related to probability flows to and from the turning points

J(X1) = Ψ−1sc

µ
dΨsc

dX
−Ψ−1c

dΨc

dX

¶
X=X1

(12)

= 2γ2Ψ−1sc (X1)Ψ
−1
c (X1)

Z X1

−∞
Ψsc(X)Ψc(X)(Vsc(X)− Vc(X))dX ,

where X1 < X0 and analogously for X2 > X0 the flow function J(X2) is
given by (12) where the integration limits are from X2 to +∞. Since the ex-
act wave functions are continuous with continuous first derivatives (provid-
ing due to these features the continuity of the density probability currents),
the idea of our procedure is to require the same from the approximate wave
functions.

The integrals entering J(X1) and J(X2) can be calculated easily for any
form of the potential, and the maximum accuracy of the any semiclassical
approach can be achieved upon the matching of the approximate solutions
at the characteristic points X#

1,2 where J(X
#
1,2) = 0. The points X

#
1,2 do ex-

ist in the case when the potentials Vc and Vsc intersect in the region where
the approximate wave functions Ψsc and Ψc are monotone ones. It is easy
to realize (see e.g., Fig. 1) that the both points occur in the vicinity of the
linear turning points for the potentials with d2V/dX2 > 0. One such a point
disappears when the potential turning point becomes the inflection point,
and there are no X#

1,2 points at all for d
2V/dX2 < 0. In the vicinity of the

second order turning point the comparison potential Vc is a parabolic one.
The curvature of the latter potential can be always chosen to guarantee the
two intersection points always exist. The choice of the comparison potential
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Figure 1: The characteristic semiclassical potentials Vsc (dot-dashed lines)
and Vc (dashed lines) for the bare anharmonic potential (11): α = −1.25,
β = 0.5 (γ = 33, and the energy window corresponds to n = 3): (a)
instanton approach; (b) WKB method.

corresponds to a certain renormalization (∝ γ−2) of the characteristic os-
cillation frequency (d2V/dX2)X=X0 . Note in passing that the approach we
are advocating here conceptually close (although not identical) to the scale
transformation proposed by Miller and Good [17] and further developed in
[19].

Thus the conditions J(X#
1,2) = 0 allow us to construct well controlled

approximate solutions to the Schrödinger equation. The accuracy of the
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approximation depends on the deviation of the approximate wave functions
from the exact ones in the vicinity of the characteristic points X#

1,2. In own
turn, the deviation is determined by the higher over (X −X0) terms of the
potential V (X) which are not included in the harmonic comparison potential
Vc. Include explicitely the corresponding higher order terms to distinguish
Vc and Vsc potentials, we find in the vicinity of the linear turning points

V (1)sc − Vc ' − c1
γ2
(X −X0)

−2 +
ω2

2
(X −X0)

2 , (13)

where the universal numerical constant c1 = 5/32, and the second term in
the r.h.s. is related to deviation of the bare potential from the linear one.
The same manner near the second order turning points

V (2)sc − Vc ' − c2
γ2
(X −X0)

−2 + α(X −X0)
3 , (14)

where the universal constant c2 = n(n−1)/4 is zero for the lowest vibrational
states n = 0 , 1, and the last term describes non-parabolicity of the potential.
Note that unlike the semiclassical action which within the instanton method
is independent of quantum numbers n, the position of the characteristic
points does depend on n, and the X#

1,2 points are placed near the boundaries
of the classically accessible region.

Now we are in the position to construct the approximate wave functions

Ψ̃(X) =

(
Ψc(X) , X

#
1 < X < X#

2

Ψsc , X < X#
1 , X > X#

2

, (15)

which are the solutions to the Schrödinger equation with the following piece-
wise smooth approximating potential

Ṽ (X) =

(
Vc(X) , X

#
1 < X < X#

2

Vsc , X < X#
1 , X > X#

2

. (16)

The wave functions calculated according to (15) in the framework of the
instanton approach close to the Weber functions in the classically accessible
regions, but their exponentially decaying tails in the classically forbidden
regions correspond to the exact (bare) potential, not to its harmonic ap-
proximant. Analogously in the WKB method these functions (15) coincide
with the semiclassical ones out of the interval (X#

1 , X#
2 ), and with the Airy

functions in this interval.
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To proceed further on we have to relate our approximate wave functions
(15) and two linearly independent solutions to the bare Schrödinger equation
Ψ1 and Ψ2. It can be written down formally as

Ψ(X) = Ψ̃(X) +

Z X

X0

dX 0v(X 0)G(X,X 0)Ψ(X 0) , (17)

where v = V (X)−Ṽ (X), G(X,X 0) is the Green function for the Schrödinger
equation with the potential (16),

G(X,X1) ≡ const[Ψ̃1(X)Ψ̃2(X1)− Ψ̃1(X1)Ψ̃2(X)] ; X1 ≤ X , (18)

where the constant in (18) is the Wronskian equal to (2γ)−1 in the instanton
method, and i(2γ)−1 within the WKB approach. In (17) Ψ ≡ (Ψ1 , Ψ2) (the
same definition for Ψ̃), and we take the turning pointX0, where the functions
Ψ and Ψ̃ are close to each other as the lower integration limit.

The solution to the integral equation (17) is expressed as the Neumann
series expansion,

Ψ(X) = Ψ̃(X) +

Z X

X0

dX1v(X1)G(X,X1)Ψ̃(X1) + · · · , (19)

and the m-th order term can be factorized and estimated as

≤ 1

m!

µZ X

X0

dX1v(X1)G(X,X1)Ψ̃(X1)

¶m

. (20)

The integrals entering this estimationZ X

X0

dX1v(X1)G(X,X1)Ψ̃(X1) = L12/22(X)Ψ̃1(X) + L11/21(X)Ψ̃2(X) (21)

contain the 2× 2 matrix with the following matrix elements

Lij =

Z X

X0

dX 0Ψ̃i(X
0)v(X 0)Ψ̃j(X

0) . (22)

It is convenient to introduce the matrix Ĉ(n) relating the n-th order wave
function correction δΨ(n) with the wave function Ψ̃Ã

δΨ
(n)
1

δΨ
(n)
2

!
= Ĉ(n)

µ
Ψ̃1
Ψ̃2

¶
, (23)
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and the full connection matrix between the exact and approximate wave
functions µ

Ψ1
Ψ2

¶
= Ĉ

µ
Ψ̃1
Ψ̃2

¶
, (24)

is

Ĉ =
X
n

Ĉ(n) . (25)

According to the inequality (20)

Ĉ(n) ≤ 1

n!
Ĉn
0 , (26)

where

Ĉ0 =

µ
L12 L11
L22 L12

¶
. (27)

Combining finally the expressions (25) - (27) we end up with the upper and
lower bounds for the correction matrix Ĉ estimation

1 + Ĉ0 ≤ Ĉ ≤ exp(Ĉ0) . (28)

We conclude from (20), (22) that the Neumann series posses an absolute
convergence if all the matrix elements Lij are finite. Besides, unlike the
correction functions introduced within the Fröman approach [4], the inte-
grals in (22) have no singularities on the real axis. Evidently the integrals
(22) are finite with the oscillating WKB functions, since the perturbation
potential v(X) is not zero only in the close proximity to the characteristic
points X#

1,2. However in the instanton method due to mixing of increasing
and decreasing exponents, the matrix elements L22 is divergent. Despite of
this divergency the product L22Ψ̃1, we are only interested in, is finite, and
it is convenient to perform one more transformation to exclude explicitely
this divergency.

Technically one can easily eliminate the both off-diagonal elements of
the matrix Ĉ0 and thus to get rid of the divergency of the (exponentially
decreasing solution Ψ̃1) amplitude due to the contribution to the Ψ̃1 the
exponentially increasing solution Ψ̃2. These linear transformations renor-
malize the correction matrix elements L22 and L11 as follows

L22(X)Ψ̃1(X) ≡ L∗22(X)Ψ̃2(X) ; L11(X)Ψ̃2(X) ≡ L∗11(X)Ψ̃1(X) , (29)
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where the renormalized matrix elements L∗22 and L∗11 read as

L∗22(X) =
Z X

X0

dX 0 Ψ̃1(X)Ψ̃2(X 0)
Ψ̃1(X 0)Ψ̃2(X)

Ψ̃1(X
0)v(X 0)Ψ̃2(X 0) ≤ L12(X) , (30)

and

L∗11(X) =
Z X

X0

dX 0 Ψ̃1(X 0)Ψ̃2(X)
Ψ̃1(X)Ψ̃2(X 0)

Ψ̃1(X
0)v(X 0)Ψ̃2(X 0) ≥ L12(X) . (31)

Now all the integrals entering L∗11, L∗22, and L12 are convergent and finite
at any X, the correction matrix Ĉ0 is transformed into the diagonal and
positively defined matrix Ĉ∗0

Ĉ∗0 =
µ

L∗11 − L12 0
0 L12 − L∗22

¶
. (32)

The n-th order corrections in the instanton approach satisfy the inequality

0 ≤ δΨ
(n)
1 ≤ (n!)−1(L11 − L12)Ψ̃1 , 0 ≤ δΨ

(n)
2 ≤ (n!)−1(L12 − L∗22)Ψ̃2 . (33)

Explicit summation of r.h.s in (33) gives us the upper and the lower bound
limits for the solutions of the initial Schrödinger equation, i.e. the stripe
where increasing and decreasing solutions are confined

|Ψ̃1(X)| ≤ |Ψ1(X)| ≤ |Ψ̃1(X)| exp(L∗11 − L12) , (34)

|Ψ̃2(X)| ≤ |Ψ2(X)| ≤ |Ψ̃2(X)| exp(L12 − L∗22) .

It is our main result in this paper, and the stripe (34) gives the accuracy of
the semiclassical instanton method. Besides we are in the position now to
estimate the contribution of increasing semiclassical solutions into decreas-
ing ones (what is relevant to solve eigenvalue problems). The summation
convergent majorant series enables us to estimate the upper bound for this
contribution

L∗11
L∗22

(1− exp(−L12)) . (35)

Therefore at L12 ¿ 1 the summation of all order perturbation terms en-
hances the 1-st order correction by the factor L12/L∗22. Analogously the
majorant estimates described above can be used to construct the connec-
tion matrices linking the semiclassical solutions through the turning points.
The comparison of the bare connection matrices (see e.g., [3, 9, 11, 13]) with
the matrices calculated accordingly to (22) - (30) provides the estimates for
the eigenvalue accuracy.
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Figure 2: Semiclassical wave function Ψ3 (n = 3) for the anharmonic po-
tential (11) with α = −1.25, β = 0.5 (γ = 33). Stars indicate the matching
points, dashed lines show the solutions to the comparison equations, and:
(a) - solid line traces the instanton solution; (b) - solid line shows the WKB
wave function.

As it was mentioned already, for the WKB method the procedure is even
more simple, since no any divergency and therefore no need to perform the
transformation (29). The similar to (20) - (21) factorization gives the Ĉ0
matrix (cf. with (27) for the instanton approach)

Ĉ0 = i

µ
L12 −L11
L22 −L12

¶
, (36)
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and the estimations for the n-th order contribution (cf. with (33)) can be
formulated now as

|Ĉ(2n)| ≤ 1

(2n)!

µ
∆ 0
0 ∆

¶n

, (37)

and
|Ĉ(2n+1)| ≤ 1

(2n+ 1)!
∆nĈ0 , (38)

where we denote ∆ ≡ L212 − L11L22. Correspondingly to (37), (38) the di-
agonal and off-diagonal correction matrix elements are bounded from above

|C11/22| ≤
¯̄̄̄
¯cos√∆+ iL12

sin
√
∆√
∆

¯̄̄̄
¯ , (39)

and

|C12/21| ≤
¯̄̄̄
¯L11 sin

√
∆√
∆

¯̄̄̄
¯ . (40)

The whole procedure we employed is rationalized in the Fig. 2, where we
compare the solutions to the comparison equation with the anharmonic oscil-
lator semiclassical wave functions computed within the instanton and WKB
approaches and indicate the optimal matching points X# found accordingly
to the condition J(X#) = 0.

4 Anharmonic oscillator

In closing let us illustrate how our estimations (34), (37) - (40) work for
a strongly anharmonic potential (11). Although it is not great triumph to
re-derive the known results, our derivation illustrates several characteristic
features of the correction matrix techniques derived in the Sect. 3: bet-
ter accuracy, rapid convergence, simple disposal of divergences, and ease
of computation in particular. The main message of our consideration in
the precedent Sect. 3 is that the quantitative accuracy of the semiclassics
depends crucially on the proximity of the semiclassical wave functions to
the solutions of the comparison equation in the region of the asymptoti-
cally smooth matching. Therefore, it is tempting to improve the accuracy
by taking into account the anharmonic corrections to the comparison po-
tential Vc(X). However, since the eigenvalues and the normalization of the
wave functions are almost independent of the detailed behavior in the vicin-
ity of the linear turning points (because near these points, situated at the
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boundaries of the classically accessible region, the probability density (i.e.
|Ψ|2) is exponentially small) this idea is useless for the WKB approach. In
contrast with this, for the instanton method, the accuracy can be improved
considerably upon including the anharmonic corrections into the comparison
potential. Indeed, within the instanton method the accuracy is determined
by the vicinity of the second order turning points where the wave functions
acquire the largest values (and just in this region the smooth matching de-
scribed above has to be performed).

Let us remind first the traditional (but formulated within the semiclas-
sical framework) perturbation theory. Keeping in the transport equation
(4) the second derivative of the prefactor A, the system of the equations of
Hamilton - Jacoby (3) and the exact transport equation

d2A

dX2
− 2γ

·
dA

dX

dσ

dX
+

µ
d2σ

dX2
− �

¶
A

¸
= 0 (41)

are exactly equivalent to the Schrödinger equation under consideration. For
the second order turning points the anharmonic corrections

Vp =
1

2

¡
αX3 + βX4

¢
(42)

can be considered as a perturbation and it is convenient to include this
perturbation Vp into the transport equation (41). Then the comparison
equation is reduced to the inhomogeneous Weber equation, and its solutions
can be expanded over the Weber functions Dν(X) [18] (see also [14, 15])

Ψν(X) = Nν

Ã
Dν(X) +

X
k

bkνDν+k(X)

!
, (43)

where N−2
ν = 1 +

P
k b
2
νk is the wave function normalization factor, the

expansion coefficients are proportional to the small parameters α/
√
γ, and

β/γ, and the Weber function index ν is related to the energy eigenvalue
� = ν + (1/2). This expansion (43) looks like a conventional perturbation
series, but it does not. In the comparison equation we are keeping the both
(decreasing and increasing) waves, and as a result of it, the indices of the
Weber functions ν + k are not integer numbers. In the first order over
the perturbation Vp the only non-zero coefficients in (43) correspond to the
following selection rules

k = ±1,±3 ; and k = 0,±2,±4 (44)
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for the cubic and fourth order anharmonic corrections respectively. Ex-
plicitely these non-zero expansion coefficients can be found by straitforward
calculations, and they are

b0ν = −3
2
β

µ
ν2 + ν +

1

2

¶
, b−1ν = −3αν2 , b1ν = −α(ν + 1) , (45)

b−2ν − β

2
(ν − 1)

µ
ν − 1

2

¶
, b2ν − β

2

µ
ν +

3

2

¶
,

b−3ν = −1
3
αν(ν − 1)(ν − 2)(ν − 3) , b3ν = −1

3
α ,

b−4ν = −1
4
βν(ν − 1)(ν − 2)(ν − 3)(ν − 4) , b4ν = −1

4
β .

On equal footing we can find the perturbative corrections to the Bohr-
Sommerfeld quantization rules, and therefore the eigenvalues. The calcula-
tion is straightforward, though deserves some precaution and rather tedious.
Skipping a large amount of tedious algebra we end up with the fractional
part of the quantum number ν

ν ≡ n+ χn , (46)

and up to the second order over the anharmonic perturbation Vp we find

χ(2)n = −15α
2

2γ

µ
n2 + n+

11

30

¶
+
3β

γ

µ
n2 + n+

1

2

¶
. (47)

However the described standard perturbative approach leads to qualitatively
wrong features of the solutions. For example, the wave functions (43), (45)
are represented as a product of ν independent exponential factors and de-
pendent of ν polynomials. As it is well known [1] in one dimension the
n-th excited state wave function must have n zeros (and the number of ze-
ros may not be changed by any perturbation). However in the m-th order
perturbation theory approximation, the wave function (43) corresponding
to a certain excited state n contains Hermitian polynomials up to the or-
der n + 3m or n + 4m for the cubic or quartic anharmonic perturbations,
respectively. Therefore some false zeros of the wave function appears in
the standard perturbation theory, and the region where the function oscil-
lates becomes more and more wide in the higher order over perturbations
approximation. The contributions of these qualitatively and quantitatively
incorrect higher order terms become dominating in the asymptotic region
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at |αγ| ∼ 1, βγ ∼ 1. It conforms with the classical results due to Bender
and Wu [20, 21] who have shown that for the quartic anharmonic poten-
tial (α = 0, β > 0 in (11)) the convergency radius is zero. Moreover, for
β = 0 and for an arbitrary small α (11) is the cubic anharmonic potential,
i.e., the decay one. Thus it should have only complex eigenvalues, what is
not the case for the eigenvalues calculated within the perturbation theory.
The method we developed in Sect. 3 enables us not only to estimate more
accurate the anharmonic corrections to the eigenvalues, and to bring the
whole schema of the calculations in a more elegant form. Our finding of
the correction matrices is not merely to surpass a technical difficulty of the
standard perturbative method, it is more one of principle, and we will show
that the method has no drawbacks of the perturbation theory.

The proof proceeds as follows. Let us consider first the instanton method
for the anharmonic potential (41) possessing one second order turning point
X = 0. As it was shown in the Sect. 3 one has to find also two other
characteristic points which are the roots of the equation (12). We denote
the points as X#

L , and X#
R (to refer by the self-explanatory subscripts L

and R to the left and to the right from the turning point X = 0). At the
next step using the correction matrices introduced in the Sect. 3, we can
define formally the transformation of our approximate wave functions (15)
into the unknown exact wave functions Ψ asµ

ΨL

ΨR

¶
= Ĉ

µ
Ψ̃L

Ψ̃R

¶
, (48)

where as above the subscripts L and R refer to the wave functions in the
regions to the left and to the right from the turning point X = 0. We do not
know the correction matrix Ĉ but we do know (see (23) - (31)) the boundary
estimations for the matrix.

The Eq. (48) can be used also to correct the known at the second order
turning point the connection matrix M̂ [3, 11, 13]. Indeed the connection
matrices link the semiclassical solutions in the X-regions to the left and to
the right from the turning points. For the isolated second order turning
point (we are dealing within the instanton method), the connection matrix
M̂ links the exponentially increasing and decreasing solutions in the space
regions separated by the turning point. The condition ensuring the correct
asymptotic behavior is the quantization rule for this case which can be
formulated as M11 = 0 (Mij are the matrix elements of the connection
matrix M̂). Since in the regions to the left and to the right from the turning
point our approximate solutions Ψ̃ coincide by their definition (15) with the
semiclassical ones, the correction matrix method enables us to correct the
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quantization rule too. Namely, the quantization rules are formulated within
the connection matrix technique read now as

CR
22T2C

L
22 − CR

21C
L
21

sin2(πν)

T2
+ (CL

22C
R
21 + CL

21C
R
22) cos(πν) = 0 , (49)

where the Stokes constant for the second order turning point [3] is

T2 =

√
2π

Γ(−ν)) , (50)

and CR,L
ij are the correction matrices at the X#

R or X#
L characteristic points

respectively. Expanding the Gamma function entering (49) around the inte-
ger numbers, i.e., as above (46), ν = n+ χn one can find from the equation
(49) the fractional part of the quantum number. If we were known the cor-
rection matrix Ĉ the solution of (49) would provide the exact eigenvalues.
But we do know only the estimations from below and from above for the Ĉ
matrix. In the same spirit we can calculate the estimations for the correction
matrices (and therefore for the eigenvalues) within the WKB approach.

Luckily it turns out that the mathematical nature of the semiclassical
problem is on our side here, and, in fact, even the first order estimation
from below Ĉ(0) (23) gives already the accuracy comparable with the stan-
dard perturbation procedure, and the estimation from above (25) gives the
eigenvalues almost indistinguishable from the ”exact” ones obtained by the
numerical diagonalization of the Hamiltonian. The same true for the wave
functions found by the correction matrix technique. We show in Fig. 3 |Ψ3|2
for the same anharmonic potential (11) with α = −1.25, β = 0.5. Clearly the
exact numerical results and those obtained by our correction matrix tech-
niques are correct qualitatively and in the very good quantitative agreement
(indistinguishable starting from the second order approximation) unlike the
situation with the standard perturbation theory. Besides we present in the
table the eigenvalues of the anharmonic potential. We take the anharmonic
coefficients α and β in (11) so large, that corresponding perturbations of
the eigen values are of the order of the bare harmonic frequency (one in our
dimensionless units α = −1.2 , β = 0.5). In the table the eigenvalues found
by the numerical diagonalization are presented in the column I. The col-
umn II contains the harmonic approximation results, the column III is the
second order perturbation theory (47), and the columns IV and V results
are obtained by applying our correction matrix technique: estimation from
below with the first order correction matrix (23) in the column IV , and the
estimation from above with the matrix (25) in the column V .
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Figure 3: Comparison of the exact |Ψ3|2 (solid line) for the anharmonic
potential (11) with α = −1.25, β = 0.5 (γ = 33) with two lowest (zero
and first order) approximations of the correction matrix method (dashed
and dot-dashed lines). Note that the second order approximation with the
relative accuracy 10−2 is indistinguishable from the exact numerical results.

Table 1: Eigenvalues of the anharmonic potential (11) (α = −1.2 , β = 0.5).

I the eigenvalues found by the numerical diagonalization;
II the harmonic oscillator eigenvalues;
III the eigenvalues in the second order perturbation theory (47);
IV the eigenvalues estimated from below by the correction matrix (23);
V the estimation from above with the matrix (25).
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To conclude, as we have shown how to estimate the corrections to the
main technical tool for the semiclassical approach, the connection matrices
linking the solutions to the left and to the right from the turning points.
Everything (e.g., the upper and the lower bounds for χn) is determined by
the matrices L12 and L∗22. Approximating to (11) potential is found from
(13) and after that straightforward computing according to (22) the matrices
Lij and their renormalization (30) leads to the corrections we are looking
for, presented in the Fig. 4, which allow us to estimate the accuracy of
the semiclassical eigenstates and eigenfunctions. We conclude that even for
a strongly anharmonic potential the both methods (WKB and instanton)
are fairly accurate ones (about 5%) up to the energy close to the potential
barrier top (in the region of negative curvature, we already discussed above).

Figure 4: Corrections to the decreasing solutions in for the anharmonic
potential (11); β = 0.5 , n = 3 , γ = 33; (1, 3) - instanton method, (2, 4)
- WKB, (1, 2) - the first order corrections L11, (3 , 4) - the upper bound
estimation summing up all terms. The vertical dashed lines indicate the
values of the cubic anharmonic term (α) where the inflection point and new
extrema of the potential are appeared.
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It is worth noting that in the frame work of the conventional perturba-
tion theory (due to zero convergency radius with respect to β coefficient in
(11)) pure computational problems to get the same accuracy become nearly
unsurmountable, see e.g., [20, 22]. Our findings show that to estimate quan-
titatively the semiclassical accuracy it is enough to compare two linearly
independent (with the same quantum number) solutions of the initial po-
tential under study, and of the approximating piecewise smooth potential.
The main advantage of the approach is related to the appropriate (13), (16)
choice of the approximating potential, providing absolutely convergent ma-
jorant series (17) for the solutions. Actually our correction matrix technique
is a fairly universal one and enables to estimate (and improve!) the semiclas-
sical accuracy for arbitrary one dimensional potentials with any combination
of the turning and of the crossing points.

We dedicate this paper in memoriam of our colleague and friend Dr.
Israel Vagner.
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