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Abstract
The law of Electromagnetic wave propagation inside a waveguide is

governed by the Helmholtz equation. This equation is derived from the
standard wave equation by assuming sinusoidal time dependence. Such
an equation is valid if the space-time manifold is flat, i.e., Minkowskian.
In the presence of a gravitational field, according to Einstein’s gen-
eral theory of relativity, the space-time manifold becomes curved and
the geometry of such a curved manifold is described by a Riemannian
metric. Consequently, the wave equation in such a curved space-time
needs to be modified to account for the curvature. In addition, the
assumption of sinusoidal time dependence gives a modified Helmholtz
equation. Since the metric in a curved space-time manifold can be
expressed in terms of the gravitational potential, the gravitational po-
tential will enter into the curved space-time wave equation. Such an
equation can be derived from a variational principle. In this paper,
this variational problem has been solved using a finite element method
on rectangular waveguide. The shifts in the modes of propagation in-
duced by the gravitational potential are obtained and compared by
considering a numerical example.

Keywords: General theory of relativity, electromagnetism, metric
tensor, generalized Laplace operator, test functions, finite element
method.
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1 Introduction

The scalar wave equation in flat (or rectangular) space-time is the standard
wave equation [1]. When the dependence on time and space (z-coordinate)
is sinusoidal and exponential, respectively, this wave equation reduces to the
two-dimensional Helmholtz equation. It can be solved numerically by using
the finite element method for a waveguide (of rectangular cross-section) with
specified potential on the boundary [2]. When the metric of space-time is
curved, the scalar wave equation considered above is no longer coordinate
covariant and one must use the Laplace-Beltrami operator, i.e., wave opera-
tor in curvilinear coordinates. Such a technique is particularly appropriate
for describing the propagation of electromagnetic waves in a gravitational
field. It must, however, be remembered that the propagation of electro-
magnetic waves in a curved space-time is not described by the scalar wave
equation [3, 4] and one must describe the dynamics of the four vector po-
tential. However, this exercise serves as a starting point for investigating
numerical methods for wave propagation in a gravitational field. In addi-
tion to the gravitation and Electromagnetic fields, the present work is also
related to the general theory of relativity and it is appropriate to discuss it
in brief.

2 General theory of relativity: Background

In the present work, the concept of relativity given by Einstein in his pre-
liminary predictions has been applied. Einstein’s preliminary prediction
explains how a ray of light from a distant star, passing near the Sun, would
appear to be attracted, or bent slightly, in the direction of the Sun’s mass.
At the same time, light radiated from the Sun would interact with the Sun’s
mass, resulting in a slight change toward the infrared end of the Sun’s optical
spectrum [5].

About 1912, Einstein began a new phase of his gravitational research,
with the help of his mathematician friend Marcel Grossmann, by phrasing
his work in terms of the tensor calculus of Tullio Levi-Civita and Gregorio
Ricci-Curbastro. The tensor calculus greatly facilitated calculations in four-
dimensional space-time, a notion that Einstein had obtained from Hermann
Minkowski’s mathematical elaboration of Einstein’s own special theory of
relativity [1]. Einstein named this new work as the general theory of rela-
tivity. After a number of false starts, he published the definitive form of the
general theory in late 1915. In this, the gravitational field equations were
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covariant, i.e., similar to Maxwell’s equations. The field equations have the
similar form in all equivalent frames of reference. To their advantage from
the beginning, the covariant field equations gave the observed perihelion
motion of the planet Mercury. Over the past 60 years, the original form
of Einstein’s theory of general relativity has been verified numerous times,
especially during solar-eclipse expeditions when Einstein’s light-deflection
prediction could be tested. In 1915, Einstein developed the theory of gen-
eral relativity in conjunction with the objects accelerated with respect to
one another. This theory explains apparent conflicts between the laws of
relativity and gravity. To resolve these conflicts, he developed an entirely
new approach to the concept of gravity, which is based on the principle
of equivalence. The principle of equivalence holds that forces produced by
gravity are in every way equivalent to forces produced by acceleration, and
so it is theoretically impossible to distinguish between gravitational and
accelerational forces by experiment.

Thus, Newton’s hypothesis, i.e., every object attracts every other object
in direct proportion to its mass, is replaced by the relativistic hypothesis, i.e.,
the continuum is curved in the neighborhood of massive objects. Einstein’s
law of gravity simply states that the world line of every object is a geodesic
in the continuum. A geodesic is the shortest distance between two points,
but in curved space it is not generally a straight line. Similarly, geodesics
on the surface of the earth are great circles, which are not straight lines on
any ordinary map.

Since 1915, the theory of relativity has been developed extensively among
others by Einstein and by the British astronomers James Hopwood Jeans,
Arthur Stanley Eddington, and Edward Arthur Milne, by the Dutch as-
tronomer Willem de Sitter, and by the German-American mathematician
Hermann Weyl [6, 7, 8]Most of their efforts are to extend the theory of rela-
tivity under electromagnetic phenomena. Although some progress has been
made in this area, these efforts have been marked thus far by less success.
No complete development of this application of the theory has yet been
generally accepted.

In 1928, a relativistic electron theory was developed by the British math-
ematician and physicist Paul Dirac, and subsequently a satisfactory quan-
tized field theory, called quantum electrodynamics, was evolved. It unifies
the concepts of relativity and quantum theory in relation to the interaction
between electrons, positrons, and electromagnetic radiation [9].
In recent years, Hawking [10] made an attempt of full integration of quan-
tum mechanics with relativity theory. Many attempts have been made in
this work, yet very few people have studied the effect of gravitational field on
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the electromagnetic, i.e., the frequency of propagation of waveguide. Thus,
the present work aims to investigate the effects of gravitational field on the
frequency of propagation modes of the waveguide using the finite element
method.

The covariant field equation arising in the field of general theory of rela-
tivity is the scalar wave equation, which describes the propagation of scalar
wave field in the presence of gravitation, and is described below.

3 Problem formulation

The action for the scalar field V is given by

S[V ] =

Z
gµνV,µV,ν

√
gd4x (1)

where

V,η =
∂V

∂Xη
η = µ, ν

and gµν and g and are the contravariant metric tensor and the determinant
of covariant metric tensor, respectively.
It is known from the Jacobian theory that S[V ] is invariant under diffeo-
morphisms of the space-time manifold.

The action principle
δS[V ] = 0 (2)

gives the scalar wave equation

(gµν
√
gV,ν),µ = 0 (3)

Assume that the integral is carried out over the region D. The coordinates
(x0, x1, x2, x3) are (ict, x, y, z)

and for the Newtonian metric

ds2 = dx2 + dy2 + dz2 − C2
µ
1 +

2U

C2

¶
dt2 (4)

we have

g00 =

µ
1 +

2U

C2

¶
, g11 = g22 = g33 = 1

other g0ijs being zero. We then get

gµνV,µV,ν
√
g = − 1

C2

µ
1 +

2U

C2

¶−1/2
V 2,t +

µ
1 +

2U

C2

¶1/2
|∇V |2 (5)
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where V,t= ∂V
∂t . For sinusoidal time dependence, the action is, therefore,

given by

S[V ] =

Z "µ
1 +

2U

C2

¶1/2
|∇V |2 − k2

µ
1 +

2U

C2

¶−1/2
V 2

#
dxdydz (6)

where k is the wave number. Setting the variation δS[V ] = 0 then givesÃ
∇,
µ
1 +

2U

C2

¶1/2
∇V

!
+ k2

µ
1 +

2U

C2

¶−1/2
V = 0 (7)

We define the function

φ(x, y, z) =

µ
1 +

2U

C2

¶1/2
(8)

and then the modified Helmholtz equation becomes

(∇, φ∇V ) + k2φ−1V = 0 (9)

Eq. (9) is a generalized eigenvalue problem. The approximate minimization
of the action function can be carried out using the finite element method.
In the finite element method, the volume V is divided into pixels and within
each pixel, we approximate the potential by a linear function. In this work,
the two-dimensional problem is considered as it is easier to analyze. For the
two-dimensional problem, metric tensor is given by

ds2 = −
µ
1 +

2U

C2

¶
C2dt2 + dx2 + dy2 (10)

so that

x0 = ict (11a)

x1 = x (11b)

x2 = y (11c)

g00 =

µ
1 +

2U

C2

¶
(11d)

g11 = g22 = 1 (11e)

g =

µ
1 +

2U

C2

¶
(11f)

(11g)
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Then, the action for the modified two-dimensional Helmholtz equation is

S[V ] =

Z
[(

µ
1 +

2U

C2

¶1/2
|∇V |2 − k2

µ
1 +

2U

C2

¶−1/2
V 2]dxdy. (12)

Assume that the wave guide is rectangular and the gravitational potential
U is generated by a piece of point matter located at the point (R, 0). Then,

U(x, y) = − GM

((x−R)2 + y2)1/2
(13)

where G is the gravitational constant and M is mass of the earth. The
waveguide cross section is [0, A] × [0, B] where R >> A,B. For example,
we can take A = 3, B = 2 and R = 10 and formulate the finite element
technique for this problem. The finite element formulation for this problem
is detailed in the next section.

4 Finite element formulation

In this paper, the rectangular cross section of the waveguide is divided into a
number of finite elements. An element is considered to be first order triangu-
lar in shape. Within each elemental triangle, the potential V is expanded as
a linear combination of three affine linear functions with coefficients being
the vertex potentials. The action functional S[V ] is computed by substi-
tuting this expansion to give a quadratic function of the vertex potentials
having the form

VTAV − k2VTBV (14)

Where V is a vector of vertex potentials and the matrices A, B are obtained
from integrals of the formZ

φiφjdx.dy and
Z −→∇φi,−→∇φjdx.dy

over the elemental triangles. The computational example in the preceding
section gives numerical values for entries of the matrices A and B. Minimiza-
tion of the quadratic form (Eq. 14) over V gives the generalized eigenvalue
problem:

(A− k2B)V = 0

Therefore k2 can be computed by solving the determinantal equation

|A− k2B| = 0
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This expression has been used to obtain the modes (k2) in the computations
that follow. A schematics of a triangular finite element in the rectangular
waveguide is shown in Fig. 1.

Figure 1: Schematic representation of a triangular finite element.

Consider a triangle having vertices (x1, y1), (x2, y2), (x3, y3). Two vec-
tors, −→u and −→v have been drawn by joining the vertices [(x1, y1), (x2, y2)]
and [(x1, y1) and (x3, y3)], respectively.

Let
d1 = |u| =

p
(x2 − x1)2 + (y2 − y1)2 (15)

and
d2 = |v| =

p
(x3 − x1)2 + (y3 − y1)2 (16)

The unit vector along the two directions u and v are

û =
u

|u| =
(x2 − x1, y2 − y1)

d1
(17)

and

v̂ =
v

|v| =
(x3 − x1, y3 − y1)

d2
(18)
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any point (x, y) inside this triangle can be represented as

(x, y) = (x1, y1) + u.û+ v.v̂

= (x1, y1) +
u(x2 − x1, y2 − y1)

d1
+

v(x3 − x1, y3 − y1)

d2

so

x = x1 +
u(x2 − x1)

d1
+

v(x3 − x1)

d2
(19)

and

y = y1 +
u(y2 − y1)

d1
+

v(y3 − y1)

d2
(20)

The solution of these two linear equations results in the variables u, v as
linear functions of x, y. The area measure is given by

ds(u, v) = |u× v|du.dv

where
|u× v| = sinα

Here, α, the angle between the vectors u and v, is defined as

cosα =
u.v

d1.d2

=
(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1)

d1.d2
(21)

The integral of a function φcan be evaluated as

I(φ) =
1

2

Z d1

0

Z d2

0
φ

·
x1 +

u(x2 − x1)

d1
+

v(x3 − x1)

d2
,

y1 +
u(y2 − y1)

d1
+

v(y3 − y1)

d2

¸
sinα.dudv (22)

For φ = 1, we get

I(1) =
d1d2 sinα

2
(23)

which represents the area of the triangle.
Suppose we write

V (x, y) = ax+ by + c for x, y ∈ ∆
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with ∆ as the area bounded by the triangle. The constants a, b, c are chosen
such that V at the vertices are given as follows:

V (x1, y1) = V1,

V (x2, y2) = V2,

V (x3, y3) = V3.

Thus,

 x1 y1 1
x2 y2 1
x3 y3 1

 a
b
c

 =

 V1
V2
V3

 .

Now we find that

a =
V1(y2 − y3) + V2(y3 − y1) + V3(y1 − y2)

∆
, (24)

b =
V1(x2 − x3) + V2(x3 − x1) + V3(x1 − x2)

∆
, (25)

c =
V1(x2y3 − x3y2) + V2(x3y1 − x1y3) + V3(x1y2 − x2y1)

∆
(26)

where
∆ = x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1. (27)

So for x, y ∈ ∆ we have

V (x, y) = ax+ by + c

= V1φ1(x, y) + V2φ2(x, y) + V3φ3(x, y)

where

φ1(x, y) =
(y2 − y3)x+ (x2 − x3)y + (x2y3 − x3y2)

∆
, (28)

φ2(x, y) =
(y3 − y1)x+ (x3 − x1)y + (x3y1 − x1y3)

∆
, (29)

φ3(x, y) =
(y1 − y2)x+ (x1 − x2)y + (x1y2 − x2y1)

∆
. (30)

The following two integrals occur when one uses the finite element method
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First I1 =

Z
∆
V 2(x, y)dxdy

Second I2 =

Z
∆
|∇V |2dxdy

These integrals are evaluated by dividing the rectangular waveguide
cross-section into 28 triangular elements. The finite element mesh is shown
in Fig. 2.

Figure 2: A finite element mesh (28 elements and 22 nodes). The numbers
shown in circles and squares represent the nodes and elements, respectively.

The nodal coordinates of each elements are given in the Table 1.
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Table 1: Nodal coordinates of the finite element mesh of Fig. 2

S.No. Element no. Coordinates
1 Element 1 (0.0,0.0),(0.5,0.5),(0.0,0.5)
2 Element 2 (0.0,0.0),(1.0.0.0),(0.5,0.5)
3 Element 3 (1.0,0.0),(1.5,0.5),(0.5,0.5)
4 Element 4 (1.0,0.0),(2.0,0.0),(1.5,0.5)
5 Element 5 (2.0,0.0),(2.5,0.5),(1.5,0.5)
6 Element 6 (2.0,0.0),(3.0,0.0),(2.5,0.5)
7 Element 7 (3.0,0.0),(3.5,0.5),(2.5,0.5)
8 Element 8 (2.5,0.5),(3.0,0.5),(3.0,1.0)
9 Element 9 (2.5,0.5),(3.0,1.0),(2.0,1.0)
10 Element 10 (1.5,0.5),(2.5,0.5),(2.0,1.0)
11 Element 11 (1.5,0.5),(2.0,1.0),(1.0,1.0)
12 Element 12 (0.5,0.5),(1.5,0.5),(1.0,1.0)
13 Element 13 (0.5,0.5),(1.0,1.0),(0.0,1.0)
14 Element 14 (0.0,0.5),(0.5,0.5),(0.0,1.0)
15 Element 15 (0.0,1.0),(3.0,1.5),(2.5,1.5)
16 Element 16 (2.0,1.0),(3.0,1.0),(2.5,1.5)
17 Element 17 (2.0,1.0),(2.5,1.5),(1.5,1.5)
18 Element 18 (1.0,1.0),(2.0,1.0),(1.5,1.5)
19 Element 19 (1.0,1.0),(1.5,1.5),(0.5,1.5)
20 Element 20 (0.0,1.0),(1.0,1.0),(0.5,1.5)
21 Element 21 (0.0,1.0),(0.5,1.5),(0.0,1.5)
22 Element 22 (2.5,1.5),(3.0,1.5),(3.0,2.0)
23 Element 23 (2.5,1.5),(3.0,2.0),(2.0,2.0)
24 Element 24 (1.5,1.5),(2.5,1.5),(2.0,2.0)
25 Element 25 (1.5,1.5),(2.0,2.0),(1.0,2.0)
26 Element 26 (0.5,1.5),(1.5,1.5),(1.0,2.0)
27 Element 27 (0.5,1.5),(1.0,2.0),(0.0,2.0)
28 Element 28 (0.0,1.5),(0.5,1.5),(0.0,2.0)

4.1 Acceleration term: integral V 2(x, y)

In the special case when the gravitational field is absent, V satisfies the
Helmholtz equation

(∇2 + k2)V = 0 (31)

which can be derived from the variational principle,

δ

·Z
|∇V |2dxdy − k2

Z
V 2dxdy

¸
= 0 (32)

The integral of V 2 term results in the k2V term of the Helmholtz equation,
which corresponds to the acceleration term ∂2V

∂t2
in the standard wave equa-

tion, when the wave field varies sinusoidally with time. Thus it is apt to callR
V 2dxdy, the acceleration term in the action. The expression

R |∇V |2dxdy
in the action represents the field energy. Indeed in the static case, the ac-
tion reduces to

R |∇V |2dxdy, which is proportional to the electrostatic field
energy. Thus it is apt to view

R |∇V |2dxdy as the field energy. It may be
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more apt to look upon
R |∇V |2dxdy as the potential energy of the wave field

and
R
V 2dxdy as the kinetic energy for obvious reasons. Now

I1 =

Z
∆
V 2(x, y)dxdy =

Z
∆
(ax+ by + c)2

µ
1 +

2U

C2

¶−1/2
dxdy (33)

By substituting the value of (x, y) in terms of (xi, yi) in equation (31), we
get

Z
∆
V 2(x, y)dxdy =

sinα

2

Z d1

0

Z d2− d2u
d1

0

µ
1 +

2U

C2

¶−1/2
×
·
a

µ
x1 +

u(x2 − x1)

d1
+

v(x3 − x1)

d2

¶
(34)

+ b

µ
y1 +

u(y2 − y1)

d1
+

v(y3 − y1)

d2

¶
+ c

¸2
dudv

Now separating the variable of u and vZ
∆
V 2(x, y)dxdy =

sinα

2

Z d1

0

Z d2− d2u
d1

0

µ
1 +

2U

C2

¶−1/2
×
·
u

µ
a(x2 − x1) + b(y2 − y1)

d1

¶
(35)

+ v

µ
a(x3 − x1) + b(y3 − y1)

d2

¶
+ c0

¸2
where

c0 = ax1 + by1 + c.

We can write equation (33) as follows:Z
∆
V 2(x, y)dxdy = T1 + T2 + T3 + T4 + T5 + T6 (36)

where, the integrals (T1 to T6) are given as follows. These integrals have to
be calculated for each pixel.

T1 =
sinα

2

Z d1

0

Z d2− d2u
d1

0
[
a(x2 − x1) + b(y2 − y1)

d1
]2
µ
1 +

2U

C2

¶−1/2
u2dudv

(37a)
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T2 =
sinα

2

Z d1

0

Z d2− d2u
d1

0
2[
a(x2 − x1) + b(y2 − y1)

d1
]

×[a(x3 − x1) + b(y3 − y1)

d2
]

µ
1 +

2U

C2

¶−1/2
uvdudv (37b)

T3 =
sinα

2

Z d1

0

Z d2− d2u
d1

0
[
a(x3 − x1) + b(y3 − y1)

d2
]2
µ
1 +

2U

C2

¶−1/2
v2dudv

(37c)

T4 =
sinα

2

Z d1

0

Z d2−d2u
d1

0
[
2C 0(a(x2 − x1) + b(y2 − y1))

d1
]

µ
1 +

2U

C2

¶−1/2
ududv

(37d)

T5 =
sinα

2

Z d1

0

Z d2−d2u
d1

0
[
2C 0(a(x3 − x1) + b(y3 − y1))

d2
]

µ
1 +

2U

C2

¶−1/2
vdudv

(37e)

T6 =
sinα

2

Z d1

0

Z d2− d2u
d1

0
C 02

µ
1 +

2U

C2

¶−1/2
dudv (37f)

Here

U(x, y) = − GM

((x−R)2 + y2)1/2

Let GM = 1 and velocity of light, C is given by C = 1 for simplification of
calculation. NowZ d1

0

Z d2−d2u
d1

0
V (x, y)2dxdy = I(φ) = T1 + T2 + T3 + T4 + T5 + T6

The above integration for first element is given as follows:Z d1

0

Z d2− d2u
d1

0
V (x, y)2dxdy = 0.7072v21 + 0.02v

2
2 + 0.4764v

2
3 − 0.722v1v2

− 1.5754v1v3 − 0.2026v2v3 (38)

After calculating the above integrals for each element in the above stated
manner, we will find the sum of these integrals over the elements in which we
have divided the cross-section. Here we have divided the cross-section into
28 elements (Fig. 2). Summation of these integrals will result in a matrix
B of size 22× 22.
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4.2 Acceleration term: integral |∇V |2

Z d1

0

Z d2− d2u
d1

0
|∇V |2dudv =

Z d1

0

Z d2− d2u
d1

0

·
1 +

2U

C2

¸
×
"µ

∂V

∂x

¶2
+

µ
∂V

∂y

¶2#
dxdy (39)

Here,

dxdy = Jdudv (40)

The Jacobian J is given by

J =

 ∂X
∂U

∂X
∂V

∂Y
∂U

∂Y
∂V

 =

 x2−x1
d1

x3−x1
d2

y2−y1
d1

y3−y1
d2

 .

Now

dx.dy =
(x2 − x1)(x3 − x1)

d1.d2
du.dv = −0.1250.

FinallyZ d1

0

Z d2− d2u
d1

0
|∇V |2dudv =

Z 0.25

0

Z 0.125−0.5u

0

·
1 +

2U

C2

¸
(41)

×
"µ

∂V

∂x

¶2
+

µ
∂V

∂y

¶2# (x2 − x1)(x3 − x1)

d1d2
dudv

Here"µ
∂V

∂x

¶2
+

µ
∂V

∂y

¶2#
= a2 + b2 = 4(v21 + v22 + 2v

2
3 − 2v2v3 − 2v1v3)

After substituting all the values in equation (44) and integrate, we getZ d1

0

Z d2−d2u
d1

0
|∇V |2dudv = −0.0072(v21 + v22 + 2v

2
3 − 2v2v3 − 2v1v3)

Here v1,v2, v3 · · · vn are the nodal potential. Solution of integration of
|∇V |2dudv for all the 28 element, computed in same manner will result
in a matrix A of size 22× 22.
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5 Results

Simulations were carried out using MATLAB and Maple softwares for a
rectangular (0.1 ≤ b/a ≤ 1) waveguide. The numerical values were obtained
with and without gravitational effects. The frequency of propagation (k2)
for the waveguide in the gravitational field is obtained, as shown in the
Fig. 3. We can see from the graph [Fig. 3] that the modes get shifted due
to the effect of gravitation.

Figure 3: Computed eigenvalues.

Also shown in the figure are the frequencies of propagation for the
waveguide without the gravitational effect. A comparison of the two values
(with and without gravitational effects) clearly shows a shift in the propaga-
tion modes. The gravitational field exerts its influence on the propagating
electromagnetic wave via a finite space-time curvature. This is modelled by
a metric with spatially varying coefficients. When the covariant scalar wave
equation is written down in such a metric then coupling terms arise involving
both the metric coefficients and the propagating field. These terms result
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in a small shift in the modes, which has been analyzed in this study. These
results may be useful in the design process of rectangular, square and ridge
waveguide.

6 Concluding remarks

A finite element formulation for the computation of the propagation modes
of the electromagnetic waveguide with and without gravitational effects has
been presented and discussed. In presence of the field of gravitation, a
shift in the modes of the waveguide is noticed [11]. Textbook analysis of
waveguide does not take into account the effect of gravitation on the propa-
gation of electromagnetic waves. The analysis presented in this paper does
take into account this interaction which can be employed to analyze the
nature of a massive distribution of matter when one space-craft passes close
to it by looking at the behavior of a waveguide inside the space-craft.
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