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Abstract

In our days, factor analysis has become an important statistical
instrument of investigation in modern science, being an adequate tool
to investigate the principles of interaction of components and their in-
tegration into a system. The paper, not pretending to a complete and
detailed review, is intended mainly for a wide community of ecologists,
which are interesting in principles of using factor analysis in environ-
mental studies. Properties of factor analysis as a robust method of
investigation in environmental studies, are considered and discussed
on the examples of using methods of factor analysis in air, water and
land ecological systems.

1 Introduction

Factor analysis has become in our days a principal statistical method of
investigation in life sciences. One can ask what are the reasons of its wide
dissemination in almost all scientific fields. Why so much efforts are directed
towards new modifications and development of factor analysis methods?
What are the benefits that factor analysis can achieve in environmental
studies?

While for most exact sciences, the using of differential equations, alge-
bra, set theory, mathematical logic, and operational research is typical and
usually sufficient, in such sciences as biology, psychology, sociology - meth-
ods intended to the analysis of multiple processes distribution and based on
the probabilistic, rather then functional, homomorphism of the model and
the object, are used. Therefore, the primary role passes on to the methods of
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mathematical statistics, theory of information, theory of random processes,
etc. However, most of these methods has one crucial defect: they are not
integral, and can not give an answer to the question about the specifics and
the reasons of organization of analyzed elements. Factor analysis, being an
integral statistical method, meets both above-mentioned requests with an
opportunity to define and evaluate the structural-functional organization of
the system.

Environmental sciences deal with systems characterized by inherent vari-
ability (natural, anthropogenic, spatial/temporal) and multivariate origin [1],
by relations of developing and control and acting under laws of probability.
Therefore, the revealing relations, their limits and hierarchy should be a
principal goal in analysis of complicated environmental systems. This can
explain a wide use of factor analysis in environmental studies.

Factor analysis is a standard technique in multivariate analysis. So far as
the mathematics of factor analysis is not in the scope of this work, I would
like just to mention the best, to my knowledge, classical books of Harman [2]
and Lawley and Maxwell [3].

A hundred years ago, Spearman [4] published in the American Journal
of Psychology the paper about the factor of general intelligence, based on
fulfillment of all tests connected with intellectual functions. The main goal
of the factor analysis was the control of conformity of a priory given factor
structure to the experimental data, and the analysis of quantitative differ-
ences between tests. Only the multiple-factor analysis, proposed in 1935 by
Thurstone [5], has allowed to pick out factors not defined a priory. How-
ever, all methods of multiple-factor analysis, the centroid method [5], and
the method of maximum likelihood [6], very cumbersome in calculations and,
mainly, leading to different factor structures, caused the wave of disappoint-
ments in the factor analysis, especially in attempts of pithy interpretation
of the factors, and therefore stipulated the domination of positivistic, oper-
ationalistic ideas in it. Failures in the interpretation led even such “func-
tionalist” as Thurstone to the view on the factor analysis only as a scientific
method for the confirmation or rejection of hypotheses concerning the na-
ture of processes [7]. Rotation of the factor matrix allowed overcoming the
uncertainty of interpretation, but criteria of the rotation itself were based
on the very vague signs of “simple structure”, or on the agreement with
data obtained by other methods, other investigators and on the agreement
to common principles of the concrete science.

The exit of this deadlock was shown by Hotelling proposed the method of
principal components analysis (PCA) permitting calculation of the unique
matrix of the orthogonal factors [8]. Although this method required many
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mathematical computations and could be used in practice only with a progress
of computers, it immediately got an appreciation of many investigators.
Thurstone first pointed that even the most powerful method of factor analy-
sis - the centroid method - is not more then “calculating compromise” of
the principal component method, which was later proved by Anderson and
Rubin [9]. After the appearance of this method, factor analysis has got
his second birth and has had a right to be considered as a method of the
structure search in all fields of science.

Let us consider factor logic as a principle of analysis. Suppose that ele-
ments of a system can be observed or measured on any finite and unique set
for the whole system, for example, on the time axis or/and on the set of some
homogeneous objects. This set of components in the factor analysis got the
name of the matrix of individuals. After the components have been chosen
and the matrix has been set, the matrix of correlations between parameters
can be calculated. Factor analysis transforms this matrix to the matrix of
factors, where each of them represents a causal connection of elements. It is
important to note that by using the technique of principal components, all
factors become orthogonal and caused by different properties of the system.

2 Data base

Let us try to evaluate the total number of publications in periodical journals
on the use of factor analysis in environmental studies.

Table 1 shows the relative distribution of papers concerning factor analy-
sis in various fields of science and industry. The data have been chosen from
the author’s collection hosted on http://www.magniel.com/fa/data. The
collection consists of 3460 papers hosted in the Internet by May 2004, which
include such expressions as factor analysis, principal component analysis,
etc. in the title of paper. Each paper was marked according to its belonging
to the certain type of these fields, sometimes more then one, therefore, the
sum of numbers along a column is greater or equal to the figure in the last
row.

One can be easy convinced that the probability to find the name of the
method in the title of publication is about 5%. For example, the expression
factor analysis could be found in the text of 33834 papers and in the titles
of 1622 papers according to http://highwire.stanford.edu or, respectively,
17376 and 702 papers according to http://www.scirus.com. The table shows
that 138 papers of the data base have been related to environmental studies.
Therefore they represent about 2500 publications in the Internet. Taking
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into account that for papers on environmental studies published since 1980’s
not more then half is hosted in the Internet, we come to the figure of at least
5000 publications on using factor analysis in environmental studies (not
including biological and medical aspects) which were published in periodical
journals.

Naturally, links to the most of reviewed works, could be found on
http://www.magniel.com/fa/data/ecology.html. This can help a reader to
find details of using factor analysis in a reviewed work.

1904
-1980

1981
-1985

1986
-1990

1991
-1995

1996
-2000

2001
-2004

Total

Biology 18 17 20 23 47 41 166
Chemistry 12 14 36 53 88 77 244
Chromatography 4 7 16 22 24 15 88
Economics 14 12 9 4 20 26 85
Environmental Studies 2 4 11 15 61 45 138
Food 1 4 5 2 17 21 50
Geriatry 8 5 10 9 25 31 88
Image Processing 2 7 22 27 38 51 151
Industry 4 0 2 6 38 28 78
Magnetic Resonance 1 1 3 6 25 13 49
Medicine 30 32 64 67 109 116 418
Methodology 10 25 31 49 125 151 391
Operational Research 1 1 1 9 42 41 95
Physiology 20 26 38 39 51 29 203
Psychiatry 15 14 39 61 137 99 365
Psychology 93 86 159 219 379 344 1287
Spectroscopy 11 27 40 50 108 90 326

(a) Total FA-papers 196 242 408 545 1065 1002 3460
(b) All papers(∗103) 5186 1518 1890 2117 2430 1999 14707
(c) FA/All (∗10−6) 38 159 216 257 438 501 235

Table 1. Distribution of papers on factor analysis in the Internet
(from the author’s collection http://www.magniel.com/fa/data)

The bottom rows show
(a) - total numbers of papers on factor analysis per the given time interval;
(b) - total number of publications from http://highwire.stanford.edu/;
(c) - ratio of papers on factor analysis to all papers in the Internet (c=a/b×10−6).
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Fig. 1 shows common tendencies of ongoing growth not only an absolute,
but also a relative number of publications on factor analysis. We can see
that percent of publications on using factor analysis has increased more then
in three times for the last 20 years. In the field of environmental studies this
parameter shows the growth of 5-6 times.

Figure 1: Percentage of publications on using factor analysis within a pe-
riod of 1981-2004. Solid line - all papers, dashed line - papers on en-
vironmental sciences (from http://www.scirus.com and author’s collection
http://www.magniel.com/fa/data).

3 Factor analysis in environmental studies:
common tendencies

Although the distribution of papers in the Internet does not fully correspond
to their real publications, one can see a lot of interesting tendencies on the
background of ongoing increase not only in the absolute, but also in the
relative part of publications concerning various aspects of applications and
development of factor analysis. We can see, for example, a wide dissemina-
tion of using factor analysis in environmental studies only since 1980’s, when
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other sciences already have accumulated a rich experience in application of
various methods of factor analysis and their development.

As psychology is a native home for factor analysis, it is not surpris-
ing, that the most experience has been revealed in psychological studies
[2, 3, 5—7, 10]. On the early stages of development, its methodology also
was developed according to specific requirements of psychology. Meanwhile,
other sciences using similar methods of investigations began to adopt these
methods. Therefore, the factor analysis has spread through psychiatry to
medicine, through biology to chemistry, through sociology to political sci-
ences and economics. Everywhere, new aspects of using factor analysis have
been investigated and new methods have been developed. Thus, for instance,
one should note schools of Malinowski in chemistry [11, 12], Rummel [13] in
political sciences, Jöreskog [14] in geography, which have enriched a treasury
of factor analysis with such methods as theory of errors, structural equation
models, etc. Factor analysis in neurophysiology was applied by the author in
1971-1976 in studies of human brain organization and mechanisms of mem-
ory [15—19]. Such methods of factor analysis as dynamic, informational,
hierarchical, etc., were developed in these works. Some of these methods
are used in our days, although most of them were later independently redis-
covered by other researchers (e.g., dynamic by Barber [20, 21], informational
by Browne [22], hierarchical by Becker [23] ).

While the first attempts using factor analysis in environmental studies
began in 1960’s (Garrett et al. [24]), serious attempts of using factor analysis
in environmental sciences were undertaken only in 1980’s, being based on the
factor methodology developed, first of all, in chemistry [11, 12] and geology
[14].

One of the first who accepted the concept of factor analysis in environ-
mental sciences was Hopke [25—31] who used, adopted and developed factor
technique for air quality analysis. For example, the method of three-mode
factor analysis has primarily been employed in the social sciences providing
the opportunity to examine data that are collected in form of a three-way
matrix. With this method, one can simultaneously examine system varia-
tions in the three dimensions to determine the causal factors that control
the system. On the basis of this method, Fantasia — a complex for target
transformation factor analysis was developed in [25] to apportion sources in
environmental samples and this approach has been applied to the receptor
modeling problem that attempts to relate ambient air quality to sources of
pollution [26]. Positive matrix factorization - a least squares approach to fac-
tor analysis was originally developed especially for environmental data and
applied to several problems in resolving sources of environmental pollutants
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[29—31].
Works of Aruga [32, 33] were directed to the specifics of environmen-

tal data to be studied by the logic and technique of factor analysis. The
author analyzed which kind of data (normally distributed, standardized,
transformed) are the best for a realistic factor analysis in environmental
studies and showed effectiveness of factor analysis on the examples of study
the causes of Po River pollution in the Piedmont region.

Numerous works of Einax et al. [1, 34—40] consider factor analysis as
one of the methods of chemometrics. These works present the state of the
art in environmental analysis and studies. Case studies show the enormous
possibilities, and the limits, of chemometric methods, demonstrating the
possibilities of factor analysis to detect spatial and temporal structures in
data sets.

School of Simeonov and Tsakovsky [40—44] is known by applying methods
of factor analysis to different aspects of environmental studies: atmosphere,
hydrosphere, and pedosphere. The results of these studies are important
not only in a local aspect as they allow quick response in finding solutions
and decision making but also in a broader sense as a useful environmetrical
methodology.

Jackson and Chen [45] applied robust principal component analysis for
outlier detection with ecological data and identifying atypical observations.
Because environmental studies frequently involve large numbers of variables
and observations, and these are often subject to various errors, they tend
to bias the interpretation and conclusion of an ecological study to identify
atypical observations, that was very difficult using standard statistical ap-
proaches. Only the application of robust statistical methods could help in
identifying atypical observations.

The effect of simulated outliers was studied by Chan and Shi [46] in
application of PCA to climate studies. They showed how the method of
projection-pursuit principal component analysis can be applied to analyze
regional monthly sea surface temperature and rainfall. Comparisons were
made with results derived from the traditional empirical orthogonal function
method. The principal component analysis is shown to be much more robust
than the empirical orthogonal function method and should be considered as
an alternative in many of the climate studies.

Okuhara et al. [47] proposed using factor analysis to environmental data
with probabilistic neural networks. They analyze observation data which
consist of environmental factors as the explanatory variables and a popula-
tion number of a creature (firefly) as the explained variable. The proposed
system incorporates probabilistic neural networks which can acquire an un-
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known nonlinear mapping from the explanatory variables to the explained
variable. The proposed system can estimate the effect of the explanatory
variables on the explained variable, that is, it can solve the inverse prob-
lem. To realize the desired environment for the selected creature, authors
showed that the proposed system can suggest an adequate strategy for the
controllable explanatory variables.

The problem of effective dimensionality of environmental indicators is
discussed in the work of Yu et al. [48]. In this paper, PCA is performed on
14 selected environmental indicators with “bootstrapped” confidence inter-
vals. The term “bootstrap” refers to the process of randomly re-sampling
the original sample set to generate new data sets and using these new data
sets to make estimates of the statistic of interest. The objective is to derive
some quasi-confidence intervals for the statistics when the underlying sta-
tistical distributions of the statistics are unknown. The analysis indicates
that the first four principal components, which together account for more
than 60% of the total variance in the original 14 variables, appear to be
statistically significant based on the bootstrapped eigenvalue method, al-
though the bootstrapped eigenvector method seems to be more conservative
by identifying only the first two components as the significant ones. The
first four principal components have large coefficients (eigenvectors) in ab-
solute values with air, biodiversity, land, and water indicators, respectively.
All these facts suggest that there is large redundancy in the existing envi-
ronmental indicators. Consequently, to avoid overwhelming and confusing
indicator-users including decision makers and the general public, developing
four sub-indices representing air, water, land, and biodiversity should be the
primary focus, which would probably capture the most important aspects
of the environment.

While receptor modeling techniques have been repeatedly shown to be
useful in quantifying the sources of urban aerosols, the estimation of con-
tributions from distant pollution transport was proved to be more difficult.
In the paper of Thurston and Lioy [49] was shown that Chemical Mass
Balance (CMB) and multivariate receptor oriented models (e.g. Principal
Component Analysis) each have their own strengths and shortcomings when
addressing aerosols which have undergone significant transport. In particu-
lar, multivariate methods are preferable when doubt exists as to the identity
and nature of sources influencing a monitoring site, while CMB models are
most appropriate when all important sources and their downwind charac-
teristics are known. As a result, it is concluded that these two approaches
might best be used sequentially, with multivariate methods preceding CMB
in transported aerosol assessments.
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One should mention also the monograph of Preisendorfer and Mobley,
[50], considering the use of principal component analysis in meteorology and
oceanography.

Works on using factor analysis in specific fields of environmental sciences
are reviewed in Sect. 4 (Air), Sect. 5 (Water), and Sect. 6 (Land). The fourth
traditional part of environment sciences - Biodiversity - is out of the scope
of this review.

4 Air

In this section, works concerned with chemical and physical characteristics
of the air, air and ozone pollution, precipitation, and other aspects of cli-
matology and meteorology, are reviewed.

4.1 Air pollution

Particulate matter (PM) components are the matter of the most factor
analyses of air quality. Source apportionment of PM components in five
major Chilean urban areas was investigated by Kavouras et al. [51]. Sam-
ples of mass and elemental concentrations of particles with diameter less
than 10 µm (PM10) and 2.5 µm (PM2.5) were collected. For each of the
five cities, factor analysis was applied to identify and quantify the sources of
PM10 and PM2.5. The agreement between calculated and measured mass
and elemental concentrations was excellent in most of the cities.

Advanced factor analysis of spatial distributions of PM was applied in
the work of Paatero et al. [28]. This work analyzes PM2.5 24-h average
concentrations measured every third day at over 300 locations in the east-
ern United States during 2000. The non-negative factor analytic model,
positive matrix factorization (PMF), has been enhanced by modeling the
dependence of PM2.5 concentrations on temperature, humidity, pressure,
ozone concentrations, and wind velocity vectors. The model comprises 12
general factors, augmented by 5 urban-only factors intended to represent
excess concentration present in urban locations only. The computed factor
components or concentration fields are displayed as concentration maps, one
for each factor, showing how much each factor contributes to the average
concentration at each location. Three-mode factor analysis was used also
by Zeng and Hopke [26] to the receptor modeling problem to relate ambient
air quality to sources of pollution.

Identification of source nature and seasonal variations of Arctic aerosol
by positive matrix factorization was studied in the works of Xie et al. [29—
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31]. Week-long samples of airborne particulate matter were obtained at
Alert (Northwest Territories, Canada). The concentrations of 24 particulate
constituents have strong, persistent seasonal variations that depend on the
transport from their sources. In order to explore the nature of the cyclical
variation of different processes that give rise to the measured concentrations,
the observations were arranged into both a two-way matrix and a three-way
data array. For the latter, the three modes consist of chemical constituents,
weeks within a year, and years. The two-way bilinear model and a three-way
trilinear model were used to fit the data and a new data analysis technique,
positive matrix factorization (PMF), has been used to obtain the solutions.
PMF utilizes the error estimates of the observations to provide an optimal
pointwise scaling data array for weighting, which enables it to handle missing
data, a common occurrence in environmental measurements. It can also
apply nonnegative constraints to the factors. Five factors have been obtained
that reproduce the data quite well for both two-way and three-way analyses,
where each factor represents a probable source with a compositional profile
and distinctive seasonal variations: an acid photochemical factor, a soil
factor, an anthropogenic factor, a sea salt factor, and a biogenic factor. The
results also help to confirm the hypotheses regarding the origins of the Arctic
aerosol.

A new approach to apportioning mass among various PCA source com-
ponents: the calculation of Absolute Principal Component Scores, and the
subsequent regression of daily mass and elemental concentrations on these
scores was suggested and developed by Thurston and Spengler [52]. This
method was applied to a quantitative assessment of source contributions to
inhalable particulate matter pollution in metropolitan Boston and allowed
the estimation of mass and source particle characteristics for an unconven-
tional source category: transported (coal combustion related) aerosols. This
particle class was estimated to represent a major portion of the aerosol mass,
averaging roughly 40 per cent of the fine mass and 25 per cent of the inhal-
able particle mass at the Watertown, MA site. About 45 per cent of the fine
particle sulfur was ascribed to this one component, with only 20 per cent
assigned to pollution from local sources.

Factor analysis of temporally and spatially resolved ambient samples
was done by Jeon et al. [53]. The four main source patterns of organic PM
components observed in solvent extraction (SX)-gas chromatography/mass
spectrometry profiles of both temporally and spatially resolved receptor sam-
ples obtained in the El Paso/Juarez border airshed during the study period
were interpreted to represent vehicular emissions plus resuspended urban
dust; biomass combustion; native vegetation detritus and resuspended agri-
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cultural dust; and waste burning.
Statheropoulos et al. [54] used factor analysis for examining air pollu-

tion in the city of Athens. Five years data on CO, NO, NO2, O3, smoke
and SO2 concentrations were analyzed using PCA. Separate analyses were
undertaken for summer and winter periods. It was found that the main
principal components extracted from the air pollution data were related to
gasoline combustion, oil combustion, and ozone interactions.

In the work of Chen et al. [55] origins of fine aerosol mass in the
Baltimore-Washington corridor were investigated by factor analysis of chem-
ically speciated fine particulate matter (PM2.5) and trace gases. A six-factor
model, including regional sulfate, local sulfate, wood smoke, copper/iron
processing industry, mobile, and secondary nitrate, was constructed and
compared with reported source emission profiles.

Testing and optimizing two factor-analysis techniques on aerosol was
presented by Huang et al. [56]. Elemental data for aerosol at Narragansett
(RI, USA), were used to compare the source-identification power of positive
matrix factorization (PMF), a new variant of factor analysis, with that of
conventional factor analysis (CFA) and to investigate how much each tech-
nique can be “tuned” for best results. PMF was harder to use than CFA
but resolved crustal and marine components up to an order of magnitude
better. But the most important consideration was found to be the choice of
elements, which outweighed all differences between techniques.

Assessment of air pollution sources in an industrial atmosphere was in-
vestigated by Pio et al. [57] using principal component and multilinear
regression analysis. Aerosol samples collected in the industrial area of Es-
tarreja (Portugal), were used to assess the source classes responsible for the
particulate levels observed in the local atmosphere. PCA was applied sepa-
rately to the concentrations of aerosol constituents and meteorological vari-
ables to obtain the number of factors and to verify the influence of weather
conditions on ambient air quality. The technique led to the conclusion that
soil and transport emissions represent important aerosol sources even in this
industrial environment.

Resolution of air pollution from regional aerosol components was pre-
sented in the work of Fujimura et al. [58]. Aerosol was sampled in Western
Japan during a kosa (yellow sand) dust event, with dust and pollution trans-
port from the Asian mainland across the Sea of Japan. Factor analysis was
applied for elemental concentrations and discovered two significant factors,
representing soil and sea salt rich aerosols.

To order to identify sources of ambient air pollutants, Guo et al. [59]
applied PCA to the data on non-methane hydrocarbons measured at toxic
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air pollutants monitoring stations in Hong Kong. This multivariate method
enabled the identification of major air pollution sources along with the quan-
titative apportionment of each source to pollutant species. The PCA identi-
fied four major pollution sources. The extracted pollution sources included
vehicular internal engine combustion with unburned fuel emissions, use of
solvent particularly paints, liquefied petroleum gas or natural gas leakage,
and industrial, commercial and domestic sources such as solvents, decora-
tion, fuel combustion, chemical factories and power plants.

One should also mention a work of Brumelis et al. [60] using an artificial
model of monitoring data to aid interpretation of PCA, where an artificial
data matrix of element concentrations at sampling locations was created
including six simulated gradients of correlated variables (Ca+Mg, Ni+V,
Pb+Cu+Zn, Cd, Fe and K). This model represented a simplified model of
a National Latvian survey.

4.2 Ozone pollution

Selection of the scenarios of ozone pollution at southern Taiwan using PCA
was presented by Yu and Chang [61] The monitoring data analysis performed
in this investigation focuses mainly on selecting statistically representative
scenarios of ozone pollution. Evaluating the backward trajectories and spa-
tial ozone profiles revealed that weak westerly sea breeze is the dominant
factor affecting the production of the high ozone event for most stations.

The sources of photochemical precursors for ozone were evaluated by
Buhr et al. [62] using PCA of concurrent measurements of [NOX ], [NOY ]
(total reactive oxidized nitrogen species), [CO], [SO2], [C3H8], [C6H6], and
[O3] collected at a rural Alabama field site. The results of the analysis
indicated that the major sources of NOY in the region are: coal-fired power
plants and biomass burning and/or paper mills.

A climatology of total ozone was studied by Eder et al. [63]. The spa-
tial and temporal variability of total column ozone obtained from the total
ozone mapping spectrometer was examined. The rotated principal compo-
nent analysis facilitated identification of the probable mechanisms respon-
sible for the variability in homogeneous subregions. The mechanisms were
either dynamic in nature (i.e., advection associated with baroclinic waves,
the quasi-biennial oscillation, or El Niño-Southern Oscillation) or photo-
chemical in nature (i.e., production of odd oxygen (O or O3) associated
with the annual progression of the Sun).
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4.3 Atmospheric measurements

Li et al. [64] estimated primary and secondary production of HCHO in east-
ern North America based on gas phase measurements and principal compo-
nent analysis. Based on atmospheric measurements of multiple species at
Egbert, a rural site in Ontario (Canada), the emission ratios for area sources
were estimated using a modified PCA technique. The technique yields three
principal components that represent a photochemically aged air mass, a
diurnal cycle, and fresh area emissions.

Apportionment of atmospheric aerosols was studied by Borbély et al.
[65] using target transformation factor analysis. Wind-sector related re-
gional signatures revealed a major contribution of Middle-East Europe to
the atmospheric aerosol loading in Europe. The characteristics of the local
aerosols were given in terms of source profiles and source scores.

PCA of the elements determined in the mosses was used by Berg et al.
[66] to identify atmospheric trace element deposition. Dominant factors rep-
resented long-range atmospheric transported elements, windblown mineral
particles, local emission sources, transport from the marine environment,
and contribution from higher plants.

Local atmospheric dynamics studied by using of PCA of organic aerosols
was presented in the work of Veltkam et al. [67]. The organic constituents
of atmospheric aerosols collected at Niwot Ridge (Colorado), along with
various physical and meteorological data, were measured during a collabo-
rative field study. Volatile organic compounds were thermally desorbed from
aerosol particles, separated by gas chromatography, and identified by mass
spectrometry. For each of 48 samples, organic compounds in aerosol parti-
cles, organic and inorganic compounds in the vapor phase, wind direction,
and time of day were measured. Relationships among the variables were an-
alyzed by principal component analysis in order to examine the covariations
within the data set. The 31 variables were grouped into seven factors, and
individual compounds, as well as the factors, served as molecular markers
for biologic and anthropogenic emission sources. In addition, factor scores
were used to illustrate how several organic compounds vary with respect to
local atmospheric dynamics.

Motelay et al. [68] showed the influence of meteorological parameters
(temperature, precipitation amount) on polycyclic aromatic hydrocarbons
(PAHs) concentration. PCA was used for PAHs deposition at a suburban
site of Evreux located 100 km west of Paris (France).

PCA was used by Nagendra et al. [69] to analyze one-year traffic, emis-
sion and meteorological data for an urban intersection in Delhi. Data in-
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cluded meteorological, traffic and emission variables. In urban intersections
the complexities of site, traffic and meteorological characteristic may result
in a high cross correlation among the variables. Authors showed that in
such situations PCA can provide an independent linear combination of the
variables.

In the above mentioned work of Statheropoulos et al. [54], studying air
pollution in the city of Athens, principal component analysis was also applied
to meteorological data concerning relative humidity, temperature, sunshine
duration, wind velocity and wind direction. The most prominent principal
components from the meteorological data were related to dry conditions
(summer period) and high-speed south-western winds (for both periods).
The main relationship was found between total pollution and high humidity
in combination with the low-velocity wind.

4.4 Precipitation

In 1980 Boutron and Martin [70] applied the principal component analysis
to sources of trace metals in Antarctic snows. More than 3000 concentra-
tions data obtained by the analysis of 12 trace metals in 250 snow samples
collected in various locations in Antarctica were processed through PCA.
The interpretation of the groups of so obtained covariant metals allowed es-
timation of relative contributions of the various aerosol sources to the trace
metals content of Antarctic aerosols.

PCA was applied by Zhang et al. [71] to data obtained from the chemical
analysis of rainwater for interpretation of rainwater composition. On the
basis of the correlation between variables, the classification of samples into
groups was investigated, and sources of correlation were identified.

Works of Adzuhata et al. [72, 73] were directed to chemical character-
ization and evaluation of ionic pollutants of acid fog and rain in Northern
Japan using oblique rotational factor analysis. Fog/cloud and rain water
were collected at the mountain side of Hachimantai range in northern Japan,
and rain water was also collected at Akita City in order to investigate the
air pollutant scavenging mechanism. The concentrations of various ions in
these samples were analyzed, and the fog drop size and the wind direction
were measured at each fog event. Three factors were extracted as the air
pollutants, well-known as the cloud condensation nuclei, where the contri-
bution of first factor was closely connected to the long-range transportation
of anthropogenic or natural aerosol in air masses of continental origin.

Application of PCA in studies of precipitation in Tricity (Poland) was
presented by Astel et al. [74]. Authors showed the results of monitoring
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and environmental pollution assessment for Gdańsk-Sopot-Gdynia Tricity
(Poland). The obtained results allowed to determine the relations between
variance of average concentration levels of analytes in rainfall samples, de-
pending on the season and the amount of rainfall. Chemometrical analysis
confirmed that the composition of inorganic pollution present in the precip-
itation samples taken within the Tricity was affected by the location of the
area and proximity of the Baltic Sea. A characteristic feature of the region is
the presence of industrial plants producing granulated phosphatic fertilizers,
which contributes to the average level of PO3−4 and F− ion concentration in
rainwater.

Ion concentrations in cloud water was also studied by Deininger and
Saxena [75]. The PCA was used to study the relationship between the ionic
constituents of the cloud water and the type of air mass in which the cloud
formed. Using PCA, authors could identify the most significant acids and
salts dissolved in the cloud water.

Long-term trend analysis of daily precipitation in Switzerland are pre-
sented in the work of Widmann and Schär [76]. Daily precipitation patterns
over Switzerland were investigated by rotated and unrotated principal com-
ponent analysis for the periods 1901-1990. Empirical orthogonal functions
were utilized to homogenize the precipitation series and to optimally trans-
form series of the long-term record into a few variables. Several statistically
significant linear trends were detected. This includes, in particular, a win-
tertime increase in precipitation by up to 30% per 100 years in the western
and northern parts of Switzerland.

Tsakovski, Simeonov et al. [41] applied PCA to seasonal and multivari-
ate modelling study of wet precipitation data from the Austrian Monitoring
Network. The aim of this work was to analyze the data structure of a
large data set from rainwater samples collected during a long-term inter-
val. Sampling sites from the network were chosen as data sources (chemical
concentrations of major ions only) covering various location characteristics
(height above the sea level, rural and urban sampling positions, Alpine rim
and Alpine valley disposition, etc.). Several latent factors, named “anthro-
pogenic”, “crustal” and “mixed salt”, were revealed by the multivariate
modelling procedure (PCA) possessing a similar structure for most of the
sites. The aim of the multivariate statistical study of simultaneously moni-
tored cloud water, aerosol and rainwater data from different elevation levels
in an alpine valley [44] was to extract information about latent factors de-
termining the data structure in all of the cases in order to compare and
interpret similarities and dissimilarities with respect to the elevation or the
type of the atmospheric event. Four latent factors seem to explain over 85%
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of the total variance for almost all sites and events but the factors have dif-
ferent identification for the different events or sites (e.g., “anthropogenic”,
“crustal”, “neutralization”, “salt”). Thus, a comparison between sites and
between events becomes possible. It was found that cloud water and aerosol
events are much more similar with respect to data structure (relevant to
emission sources or processes of formation) than the same events and rain-
water.

The main purpose of the work of Benzi et al. [77] was the characteriza-
tion of temperature and precipitation fields for better understanding of the
Sardinia’s climate. PCA was applied to maximum and minimum tempera-
ture and to cumulative daily precipitation data collected in Sardinia. It was
shown that the most significant temporal and spatial portion of temperature
fields are described by the first principal components and that precipitation
fields were well represented by the first three principal components.

Factors linking regional monthly sea surface temperature and rainfall
were investigated by Chan and Shi [46] by the projection-pursuit PCA.

Forecasting all-India summer monsoon rainfall can be presented by pre-
monsoon principal components of circulation fields covering the South Asian
subcontinent. Cannon and McKendry [78] analyzed predictors for all-India
summer monsoon rainfall using a bootstrap-based resampling procedure.
Monsoon precursor signals represented by principal components were in-
vestigated and comparison made with a recent observational and general
circulation modelling study. Pre-monsoon principal components formed a
compact, interpretable, and significant set of predictors for all-India summer
monsoon rainfall.

Principal components of monsoon rainfall in normal, flood and drought
years over India were analyzed by Singh [79] using empirical orthogonal
function analysis. It was found that during normal, flood and drought years,
the first four (most dominated) principal component explains 73%, 77% and
100% of the variance, with all India seasonal mean rainfall.

The summer monsoon circulation shows various spatial and temporal
oscillations and often a combination of systems produces an integrated ef-
fect. To investigate it, De and Mazumdar [80] used the principal component
analysis of rainfall and southwest monsoon over India. In this study phases
of the southwest monsoon were identified in an objective manner with the
help of T-mode PCA of weekly rainfall anomalies. Mean composite charts
were prepared utilizing all available upper air data for each category of the
monsoon epochs identified by the principal component analysis. These sets
of charts have been constructed for both the strong and weak phases associ-
ated with the first four significant principal components. The study suggests
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an objective method of interpretation of principal components by utilizing
synoptic data.

Paper of Jury [81] should be also mentioned in this Section. This work
presents the study of intra-seasonal convective variability over southern
Africa by PCA of satellite outgoing-longwave radiation departures. Results
of analysis were used to characterize the space and time scales of terrestrial
cloudiness.

5 Water

This Section deals with applications of factor analysis to all aspects of water
on the Earth, including lakes, rivers and oceans, ground- and sewage water,
and also problems of pollution and purification.

5.1 Rivers and streams

Evaluation of water ambient quality was studied by Topalián et al. [82—84]
using PCA. The Reconquista River (Buenos Aires Province, Argentina), one
of the most polluted watercourses of Latin America, receives agrochemicals
as well as domestic and industrial (mostly untreated) effluents. Physical
and chemical water variables were determined [83], unispecies algal bioas-
says were carried out in laboratory; and density and structure of phyto-
and zooplankton were analyzed as well [84]. Multivariate analyses of data
showed a clear difference between stations for ammonium, ortophosphate,
pH, hardness, chloride, phenols, and other values. In the multivariate analy-
ses between seasons, the concentration of phenols appeared as an important
feature. It was concluded that the deterioration of this water body was pro-
gressive downriver. The relatively best water quality was recorded when-
where dissolved oxygen concentration, algal diversity and planktonic crus-
tacean density were higher. The worst water quality corresponded to the
lack of cladocerans and lowest crustacean density, and higher: organic and
industrial pollution, major nutrients, hardness, conductivity, algal biomass
in bioassays, phytoplankton density, dominance of a single algal species, and
rotifer proportion in zooplankton.

The work of Haag and Westrich [85] demonstrates the usefulness of PCA
in condensing and interpreting multivariate time-series of water quality data.
In a case study the water quality system of the lock-regulated part of the
River Neckar (Germany) was analyzed, with special emphasis on the oxygen
budget. The analysis yielded four stable principal components, explaining
72% of the total variance of 11 parameters. The four components could be
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interpreted confidently in terms of underlying processes: biological activity,
dilution by high discharge, seasonal effects, and the influence of wastewater.

River pollution data were interpreted by means of chemometric methods,
including factor analysis, in papers of Einax et al. [36, 39, 40]. Sediments
and suspended particulate matter taken from sampling sites along the River
Elbe from the source to the mouth were subsequently processed by means of
multivariate statistics in order to characterize the charge of the River Elbe
with inorganic pollutants to elucidate pollution trends [39]. Environmetric
study of Simeonov, Einax et al. [40] deals with modeling and interpretation
of river water monitoring data from the basin of Saale River. Important
information was revealed about the ecological status of the region of interest:
identification of two separate patterns of pollution (upper and lower stream
of the rivers); identification of six latent factors responsible for the data
structure with different content for the two identified pollution patterns; and
determination of the contribution of each latent factor (source of emission)
to the formation of the total concentration of the chemical burden of the
river water.

Using PCA to monitor spatial and temporal changes in water quality is
presented in the work of Bengraïne and Marhaba [86]. Chemical, biologi-
cal, and physical data monitored along the Passaic River (New Jersey), are
analyzed. PCA was used to extract the factors associated with the hydro-
chemistry variability and to obtain the spatial and temporal changes in the
water quality. Solute content, temperature, nutrients and organics were the
main patterns extracted. This study showed the importance of environmen-
tal monitoring associated with simple but powerful statistics to understand
better a complex water system.

Process identification by PCA of river water-quality data was studied in
the work of Petersen et al. [87]. Time series of nutrient concentrations and
related water quality parameters taken at several locations along the River
Elbe were subjected to multivariate statistical analysis. The main question
underlying in the study is concerned with whether known interactions be-
tween water quality variables can be recovered as statistically significant
covariance patterns. Raw data and deviations from an estimated seasonal
cycle were analyzed; two leading patterns of covariance were obtained, one
discharge-dependent and the other related to biological activities

The high salinization in some reservoirs of the Contas River Basin (Bahia,
Brazil) has been erroneously attributed only to concentration by evapora-
tion. However, evaluation of the salt accumulation process during inunda-
tion applying PCA, presented in the work of dos Santos et al. [88], showed
that in period of the intense rainfalls, the saline concentration in the flowing
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rivers of the reservoirs increases, and this fact can be attributed to the dis-
charge of saline waters from small reservoirs of every drained area, provoked
by inundation, is also an important factor in the salinization process. Thus
the study of the geochemical variables: Na+, K+, Ca2+, Mg2+, Cl−, SO2−4
and CO2−3 , showed one group formed by Na

+ and Cl− and attributed to
the discharge of saline water provoked by inundation from a small reservoir,
and a second group constituted by Ca2+, Mg2+, K+ and SO2−4 , caused by
an increase provoked by the evaporation in the salinization process.

Montes-Botella and Tenorio [89] studied water characterization and sea-
sonal heavy metal distribution in the Odiel River (Huelva, Spain). PCA
showed that variables related with the products of the pyrite oxidation and
the salts that are solubilized by the high acidity generated in the oxidation
of sulfides, grouped in the first component, accounted for 40% of total vari-
ance and were the main influential factor in physicochemical water sample
properties. The second influential factor was minority metals (nickel, cobalt,
cadmium).

The combined effects of multiple indices were analyzed by Yu et al.
[90]. In this article, based on the environmental monitoring data, the water
quality of the Songhua River (North East China) was analyzed using factor
analysis, which comprehensively considered six indices of water quality of
each monitoring section. The results showed that the main pollutants had
changed to nitrogenous pollutants originated from nonpoint sources, and
water quality was variable in different hydrological periods. The results also
showed that the method was comprehensive and efficient in analyzing the
dynamics of water quality.

Wayland et al. [91] analyzed relationships between baseflow stream geo-
chemistry and land use. The purpose of this study was to examine the
usefulness of the synoptic sampling approach for identifying the relationship
between complex land use configurations and stream water quality. This
study compares biogeochemical data from three synoptic sampling events
representing the temporal variability of baseflow chemistry and land use us-
ing R-mode factor analysis. Separate R-mode factor analyses of the data
from individual sampling events yielded only two consistent factors. Agricul-
tural activity was associated with elevated levels of Ca2+, Mg2+, alkalinity,
and frequently K+, SO2−4 , and NO

−
3 . Urban areas were associated with

higher concentrations of Na+, K+, and Cl−. Other retained factors were
not consistent among sampling events, and some factors were difficult to
interpret in the context of biogeochemical sources and processes. When all
data were combined, further associations were revealed such as an inverse
relationship between the proportion of wetlands and stream nitrate concen-
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trations.
A study of heavy metal pollution in the Tinto-Odiel estuary in south-

western Spain is presented in the work of Grande et al. [92]. The application
of the factor analysis techniques on the nutrients and heavy metal concentra-
tions in 46 water samples taken from 32 different sampling stations located
along the estuary, allowed three groups of elements and compounds with a
distinct origin to be determined. So, Cu and Zn have a clear fluvial prove-
nance, whereas PO4 and As are clearly industrial wastes and Cl, K, Ca, Li,
Rb and Sr come from the sea. The existence of two agents controlling the
behavior of the analyzed elements was deduced from factor analyses, which
are: the tidal exchange with the open sea and the fluvial supply.

Evans et al. [93] applied factor analysis to investigate processes control-
ling the chemical composition of four streams in the Adirondack Mountains
(New York). Four streams were monitored intensively over a 2 year period.
Factor analysis was used to identify interrelationships between dissolved
species during this period, and to determine physical processes controlling
their behavior. Analysis of the full data set identified species which varied
predominantly on an episodic time scale, and species which were subject to
seasonal cycles.

5.2 Lakes and reservoirs

Factor analytical study on water quality in Lake Saimaa is presented in
works of Mujunen et al. [94] and Reinikainen et al. [95]. Effects of various
chlorinated and non-chlorinated organic compounds and some heavy metals
discharged from pulp and paper mills into water, sediment and aquatic an-
imals were studied in a recipient area of southern Lake Saimaa (Finland).
The main aim of the project was to find an empirical link between chemical
emission parameters and ecotoxicological effects expressed in the ecosystem.
By using the multilinear model, three interpretable factors representing nat-
ural and anthropogenic processes could be extracted. The natural long-term
variation, seasonal fluctuation and dilution of discharges in the recipient area
could be extracted into their own factors, which could be easily visualized.
The variation could be also presented with estimated variation in the wa-
ter quality parameters caused by each of these natural or anthropogenic
processes.

Loska and Wiechula [96] applied PCA for the estimation of source of
heavy metal contamination in surface sediments from the Rybnik Reser-
voir (Poland). The bottom sediments are very heavily loaded with zinc,
manganese, copper, nickel, phosphorus and lead (percentage enrichment fac-
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tor), and cadmium, phosphorus and zinc (index of geoaccumulation). The
increase of cadmium, lead, nickel, and zinc concentrations was connected
with the inflow of the contaminated water of the river Ruda and long-range
transport. The contamination of the reservoir with copper and manganese
resulted mainly from atmospheric precipitation. The variability of the bot-
tom sediment loading with metals during the investigations was affected in
the first place by changes in the concentration of iron, but also those ele-
ments whose concentrations in the bottom sediment were elevated compared
to the concentrations in shale - cadmium, nickel and lead.

Mackin et al. [97] studied elemental associations in the surface microlayer
of Lake Michigan and its fluvial inputs, which were subjected to separate
R mode factor analyses to define the geochemical phases and mechanisms
which influence the composition of the surface microlayer. The associations
revealed by these analyses indicated that the composition of the fluvial mi-
crolayers was controlled by localized factors related to the geology of indi-
vidual drainage basins, while open lake microlayers were influenced by broad
scale physicochemical interactions.

The factor analysis was used by Reisenhofer et al. [98] to verify the asso-
ciations among variables and to separate factors responsible for the observed
increase of the eutrophication of a shallow, temperate lake (San Daniele,
North Eastern Italy). Ammonia, nitrite and nitrate nitrogen, dissolved
oxygen, pH, temperature, total hardness, transparency and Zooplankton
abundance were determined in lake water samples in order to monitor the
eutrophication process. Nitrate fertilizers from surrounding farmland ap-
pear to be the main source of pollution. A secondary factor is constituted
by the whole biomass, which is both origin and effect of the increasing pro-
ductivity of the lake: the anaerobic decomposition of the organic debris in
the hypolimnion is relevant.

Rachdawong et al. [99] used a factor analysis model with nonnegative
constraints to apportion historical records of polycyclic aromatic hydrocar-
bon (PAH) sources in seven sediment cores from the central Lake Michigan
area. The same approach was applied later by Bzdusek et al. [100] to ap-
portion the sources of polycyclic aromatic hydrocarbons found in sediments
of Lake Calumet and surrounding wetlands in southeast Chicago. Source
profiles and contributions, with uncertainties, are determined with no prior
knowledge of sources. The model includes scaling and backscaling of data
with average PAH concentrations without sample normalization. Factor
analysis resulted for a two-source solution indicating coke oven (45%) and
traffic (55%) as the primary PAH sources to Lake Calumet sediments and
providing new insights since wood burning and secondary coke oven profiles
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were not recognized in the Chemical Mass Balance model.

5.3 Aquifers and groundwater

A methodology of analyzing deep aquifers with scarce data was developed by
Melloul [101] in 1995. This methodology was applied to the Nubian Sand-
stone aquifer beneath the Sinai Peninsula (in Egypt) and the Negev Desert
(in Israel) to improve understanding of the hydrology of a deep aquifer with
scarce data. PCA was used to combine various multidisciplinary data in
order to identify chemical and physical groups, which were used to define
groundwater flow paths. The findings of this study were in accord with the
generally accepted hydrogeological conceptual model of an aquifer. How-
ever, through this study, new insights were obtained by the use of PCA
method concerning: the description of a complex flow system by grouping
various qualitative and quantitative parameters; the delineation of optimal
operational zones for aquifer exploitation; and the definition and charac-
terization of six main groundwater flow paths from their outcrops in the
southern part of the Sinai to its discharge zones in the Arava River Valley
and Dead Sea area in the Negev desert. These flow paths are defined by
their water categories, which are unified expressions of such properties as
salinity, origin, and age of groundwater.

Evolution of groundwater composition in an alluvial aquifer was studied
by Helena et al. [102]. A set of quantitative analytical data from the alluvial
aquifer of the Pisuerga river, located at the north-east of Valladolid (Spain),
was processed by multivariate statistical techniques in order to investigate
the evolution of the groundwater composition between two surveys. The
original matrix consisted of 16 physicochemical variables; the exploration of
the correlation matrix allowed to uncover strong associations between some
variables as well as a lack of association between the others. PCA showed
the existence of up to five significant principal components which account
for 71% of the variance. Two of them can be initially assigned to “miner-
alization” whereas the other components are built from variables indicative
of pollution. Varimax rotation allowed to “break up” the “mineralization”
principal components into two varimax rotated principal components, as-
signed respectively to “natural” mineralization and to “saline” man-made
contamination (sodium and chloride).

The high salinization in some sectors of the Castellon Plain aquifer
(Spain) has been erroneously attributed to seawater intrusion, because of the
high and increasing contents of chloride ions. However, application of prin-
cipal components analysis by Morell et al. [103] showed that the chemical
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characteristics of groundwater are the result of three different components:
intruding seawater, freshwater from rainfall infiltration and saline water with
a characteristic sulphate-calcium-magnesium facies, derived from bordering
aquifers.

The paper of Join et al. [104] describes the use of multivariate statisti-
cal analysis to trace groundwater circulation in volcanic terrains using PCA
based on both structural and hydrochemical parameters of 243 springs of
Reunion (Western Indian Ocean). This analysis was consistent with a ge-
ological and hydrogeological conceptual model developed from a combined
hydrochemical and geological reconnaissance of 27 springs.

Characterization of groundwater contamination using factor analysis was
presented by Subbarao et al. [105]. The effluent contamination of ground-
water at two industrial sites at Visakhapatnam (India) was studied using
factor analysis. Thirty groundwater samples near a zinc smelter plant and
19 from the polymers plant were analyzed for specific conductance, chloride,
bicarbonate, sulfate, calcium, magnesium, sodium, and potassium. The data
were subjected to R-mode factor analysis and the factor scores transferred
to areal maps. While magnesium and sulfate are the dominant contaminants
at the zinc site, sodium, chloride, and bicarbonate from the effluent are af-
fecting groundwater in the polymers area. Contour maps for each factor
suggest the areal extension of the contaminants.

Liu et al. [106] applied factor analysis to the assessment of groundwater
quality in a Blackfoot disease area in Taiwan. Factor analysis was applied
to 28 groundwater samples collected from wells in the coastal Blackfoot
disease area of Yun-Lin (Taiwan). Correlations among 13 hydrochemical
parameters were statistically examined. A two-factor model was suggested
and explained over 77.8% of the total groundwater quality variation. Factor
1 (seawater salinization) included concentrations of EC, TDS, Cl−, SO2−4 ,
Na+, K+ and Mg2+, and factor 2 (arsenic pollutant) included concentrations
of Alk, TOC and arsenic.

Factor analysis was applied by Jayakumar and Siraz [107] to hydrogeo-
chemistry of coastal aquifers. R-mode factor analysis performed on ma-
jor ion data from a hydrogeochemical survey over the coastal Quaternary
deltaic aquifer of the Cauvery Basin (Tamil Nadu, India). Seven major
ions (Ca, Mg, Na, K, HCO3, Cl, and NO3, ) were analyzed from each of
the 126 water samples collected in two seasons (pre- and post-monsoon, 63
samples for each). A set of factors was found both in pre-monsoon and
post-monsoon data which explained the source of the dissolved ions and the
chemical processes which accompany the intrusion of seawater.
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5.4 Seas and oceans

Source input elucidation in polluted coastal systems was studied by Grimalt
et al. [108—110]. The sedimentary hydrocarbon composition of a coastal
system that receives the discharges of six rivers were studied by PCA and
factor analysis. This study confirmed that factor analysis is consistent with
the theoretical background of organic geochemistry in which the molecular
composition of the environmental systems is interpreted to originate from
a small number of sources. The usefulness of PCA and factor analysis for
source input elucidation in environmental studies using molecular markers
for sample description was evaluated in [110]. A case study involving the
determination of aliphatic and chlorinated hydrocarbons, fatty acids, alco-
hols, chlorophylls, and some detergent indicators in water particulates from
a deltaic system, was selected as a representative testing data set. PCA
afforded useful results to differentiate between major groups of samples but
not between geochemical sources. In contrast, factor analysis provided a
direct correspondence between factor loadings and marker groups defining
geochemically consistent organic matter contributions. For autochthonous
compounds, factor analysis allowed an even more precise characterization
of input sources than that obtained by the common “qualitative” molecular
marker approach.

Barbieri et al. [111] modeled biogeochemical interactions in the sur-
face waters of the Gulf of Trieste by three-way PCA. Data of temperature,
salinity, dissolved oxygen, nutrients and chlorophyll measured on samples of
surface seawater and collected monthly during 2 years in different sites of the
Gulf of Trieste were modeled by means of three-way PCA. Physicochemical
parameters were described by three different components that explained the
effect of the river input on the seawater pattern, the effect of temperature,
and metabolic-catabolic activity of the phytoplankton, respectively. One
spatial component accounted for the gradient of influence of the estuarine
waters in the Gulf, and three temporal components characterized three main
seasonal conditions.

An environmental study of surface seawaters in the Gulf of Valencia
was presented by Morales et al. [112] A study was made on the quality of
coastal waters in the Gulf of Valencia (Spain) in terms of contamination
markers including microbiological agents, toxic heavy metals and nutrients
that adversely affect the environment. Relationships were also established
between these factors and other physical and chemical parameters. PCA
allowed the characterization of the coastal water quality of the study zone,
establishing the sources and types of contamination, and identifying the
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littoral areas associated to the different types of contamination.
Multivariate statistical analysis of sediment data collected from the west-

ern coastline of the USA and analyzed for 15 analytes by Simeonov et al.
[43] indicated that the data structure could be explained by four latent fac-
tors. These factors are conditionally named “anthropogenic”, “organic”,
“natural”, and “hot spots”. They explain over 85% of the total variance of
the data system, which is an acceptable value for the PCA model. A study of
metal pollution in [42] was based on multivariate statistical modeling of “hot
spot” sediments from the Black Sea. Application of PCA to separate zones
of the marine environment with different levels of pollution by interpreta-
tion of the sediment analysis. The extraction of four latent factors offered
a specific interpretation of the possible pollution sources and separates nat-
ural from anthropogenic factors, the latter originating from contamination
by chemical, oil refinery and steel-work enterprises. Finally, the PLSs mod-
eling gave a better opportunity in predicting contaminant concentration on
tracer element as compared to the one-dimensional approach of the baseline
models.

Maes and Behringer [113] used PCA to estimate the upper oceanic vari-
ability of salinity of western tropical Pacific Ocean. The method was based
on combined vertical modes of temperature and salinity, and reconstructs
salinity profiles via a weighted least-squares procedure. The modes were
defined as the empirical orthogonal functions along the water column.

Bottom water formation in the Weddell Sea was analyzed by Lindegren
and Josefson [114]. The general mixing situation in the southern Weddell
Sea was studied by PCA and applied to the formation of Antarctic Bottom
Water in the southern part of the Weddell Sea. Three source waters were
indicated and the fractions of the two source waters, ice shelf water and
warm deep water were calculated.

PCA of satellite passive microwave data over sea ice was presented by
Rothrock et al. [115]. The 10 channels of scanning multichannel microwave
radiometer data for the Arctic were examined by principal component analy-
ses. Only the first two principal components contained variance due to the
mixture of surface types. Three component mixtures (water, first-year ice,
and multiyear ice) could be resolved in two dimensions.

Wensnahan et al. [116] used PCA in a case study of special sensor mi-
crowave imager from the Bering Sea. Winds from the north formed thin ice
areas which were interpreted as large amounts of open water and multiyear
ice. With PCA, these same areas are interpreted as 20-30 open water near
the lee shores but otherwise as consisting almost entirely of thin ice. Authors
came to conclusion that thin ice can be detected using satellite data.
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5.5 “Mussel watch”

PCA monitored by observations of mussels (“mussel watch”) was applied
first in 1984-1989 by Favretto et al. [117—119] in the Gulf of Trieste. From
six to ten trace elements were determined in the dissolved ash of the edible
part of wild mussels from a polluted site by electrothermal atomic absorption
spectrometry. The correlation matrix around the mean was used as a start-
ing matrix for PCA. All variables were reduced to two principal components,
accounting for 77% of the total variance. The orthogonally rotated factor
matrix indicates that Co and Ni are bonded to the first principal component
and Cd and Pb to the second principal component. Al, Cr, Mn, Fe, Zn, Cd,
and Pb are all positively associated with the first principal component and
form a cluster of variables, indicating a common terrigenous origin.

Data analysis of heavy metal pollution in the sea was studied by Piep-
ponen and Lindström [120] by using PCA. Environmental heavy metal pol-
lution in the coastal waters of the Bothnian Sea near the city of Pori was
monitored by observations of mussels. The concentrations of heavy met-
als in the soft tissues of the mussels and in different fractions of the shells
were determined by wet digestion and atomic absorption spectrometry. The
study showed that the elemental variables Fe, Ti and V were most strongly
related to the titanium oxide industry and Al, Co, Hg and Mn to the river
Kokemäenjoki.

Trace metals on the Algarve coast were analyzed by Machado et al.
[121] Cadmium, copper, iron, manganese, nickel, and zinc concentrations
were determined by atomic absorption spectrophotometry in samples of soft
tissues of the mussels. Metal concentrations increased near urban centres
and sources of industrial effluents. Consequently, the areas influenced by the
Arade River, the Guadiana estuary and the Formosa Ria lagoon presented
the highest metal concentrations. Metal concentrations in mussels from the
west coast of the Algarve were higher than in those from the east coast. Cd
and Cu concentrations in mussels from the different sampling points have
increased over the last 10 years, while Fe, Mn, and Ni concentrations along
the Algarve Coast have fallen. These results were discussed in relation to the
variation of human impact, some environmental factors, and other natural
phenomena.

Stella et al. [122] used polycyclic aromatic hydrocarbons analyses for
source identification. Polycyclic aromatic hydrocarbons (PAHs) biomoni-
tored in the aquatic environment by means of caged mussels were compared
by site and by season. Moreover, their fingerprints were compared to ma-
rine sediments and atmospheric airborne PAHs. The characterization of
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the sampling stations by means of PCA allowed distinguishing the preva-
lence of pyrogenic or petrogenic types of pollution and between two kinds
of combustibles.

5.6 Water supply, waste and sewage water

A three-way principal factor analysis for assessing the time variability of
freshwaters related to a municipal water supply was applied by Barbieri et
al. [123]. Chemical analyses, physical data and biological monitors consti-
tute the 15 parameters, on freshwaters sampled at seven sites in a karstic
area of northeastern Italy. The data set was used for a three-way principal
factor analysis aimed at exploring the pattern of information about the envi-
ronmental quality of the monitored freshwaters, since four wells are feeding
the municipal water supply of the Province of Trieste.

Vidal et al. [124] used factor analysis for the study of water resources
contamination due to the use of livestock slurries as fertilizer. Authors in-
vestigated the effects of slurry application on water quality in wells, pasture-
drainage conduits and rivers. The first axis extracted by PCA of the samples-
by-variables matrix represented the degree of dilution of the water strongly
related with saline content; the second axis represented redox conditions, af-
fecting organometallic component. In general, the positions of the samples
in this factor space reflected the major contamination processes affecting
water resources of that type (wells, conduits or rivers).

A methodology of supervisory control of wastewater treatment plants
was presented in works of Rosen and Yuan [125] and Lennox and Rosen
[126]. In these papers a methodology for integrated multivariate monitor-
ing and control of biological wastewater treatment plants during extreme
events was presented. To monitor the process, on-line dynamic PCA was
performed on the process data to extract the principal components that
represent the underlying mechanisms of the process. Fuzzy c-means (FCM)
clustering is used to classify the operational state. Performing clustering
on scores from PCA solved computational problems as well as increases ro-
bustness due to noise attenuation. The class-membership information from
FCM was used to derive adequate control set points for the local control
loops. The methodology was illustrated by a simulation study of a biologi-
cal wastewater treatment plant, on which disturbances of various types are
imposed. The results showed that the methodology can be used to deter-
mine and coordinate control actions in order to shift the control objective
and improve the effluent quality.

The ecological hygiene assessment of the water environment was studied
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by Krasovskii and Vorob’eva [127] using factor analysis. Regularities of the
formation and spread of pollution of water objects in the area of sewage
discharges of the cellulose-paper works were revealed. The bottom nature
of water pollution and their change in their contribution in relation to the
distance were determined. The bottom pollution of water was comparable
with that due to sewage and varied from 46 to 69%. The transformation of
organic matter makes a significant contribution to the total water pollution.

Critto et al. [128] applied PCA to characterization of contaminated soil
and groundwater surrounding. The characterization of a hydrologically com-
plex contaminated site bordering the lagoon of Venice (Italy) was undertaken
by investigating soils and groundwaters affected by chemical contaminants
originated by the wastes dumped into an illegal landfill.

6 Land

Geochemical and geophysical characteristics of the Earth surface are the
object of research in this Section.

6.1 Soil

One of the major interests in soil analysis is the integrated evaluation of soil
properties, which might be indicators of soil quality. Factor analysis is a
powerful tools for this integrated assessment and can help soil researchers to
extract much more information from their data. A multivariate study was
carried out by Sena et al. [129] in three farms from Guaíra, State of São
Paulo, Brazil. Conventionally managed plots that intensively utilized pesti-
cides and chemical fertilizers were compared with both non-disturbed forest
areas and alternatively managed plots. The latter were under ecological
farming employing effective microorganisms integrated with crop residues.
Eight soil parameters were determined for each plot. The multivariate ap-
proach of principal component analysis allowed to distinguish the areas as
a function of the soil management and determine which are the most im-
portant parameters to characterize them. The forest areas presented higher
microbial biomass with lower cellulolytic population than at cultivated sites.
The alternative plots were characterized by higher microbial biomass and
polysaccharide content with lower phosphate solubilizers and cellulolytic mi-
croorganisms colony counts than at the conventional areas.

Barona and Romero [130] studied the distribution of metals in soils and
relationships among fractions. PCA was used as a method for data treat-
ment to establish general relationships among metal amounts accumulated
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in different fractions and general soil properties, which were expected to
govern the metal distribution pattern. On the basis of the results obtained
from the position maps of variables and samples, the carbonate content was
the soil property with the greatest number of statistically significant corre-
lations with metal contents in fractions, so it can be considered as a relevant
parameter in the distribution of some metals such as Pb, Ni, Zn, and Cu in
the soils.

Factor analysis of soil heavy metal pollution was also used by Lin et al.
[131] in study landscape indices of 55 sampling sites in Changhua county
in Taiwan to characterize the factor patterns of eight soil heavy metals
and the interrelation patterns of these soil heavy metals, landscape and
human activities. Factor analyses revealed that soil heavy metals and data
concerning landscape data could be grouped into a six-factor model that
accounts for 82% of all the variation of data. Moreover, the first factor
included the concentration of Cd, Cr, Cu, Ni, and Zn, and urbanization and
industrialization landscape indices.

R-mode factor analysis was applied by Kumru and Bakaç [132] to the
distribution of elements in soils from the Aydin basin, Turkey to describe the
relationship among 15 remotely sensed, geochemical and industrial variables.

Maiz et al. [133] studied the evaluation of heavy metal availability in
polluted soils by two sequential extraction procedures using factor analysis.
Superficial soil and grass samples from 13 locations affected by several an-
thropogenic sources (mining, metal factory, traffic emissions) were collected
in Gipuzkoa, northern Spain. Factor analysis was used to check the associ-
ations between the total metal contents in soil and grass, as well as between
the levels of the different sequential fractions and the total content in grass.

The complexity and the large variance of environmental data sets limit
the use of common statistical methods for the assessment of the state of
pollution. Therefore, the application of geostatistical and multivariate sta-
tistical methods for the assessment of polluted soils was applied by Einax
et al. [37, 38]. Geostatistical and multivariate methods of data analysis
were used to describe patterns of soil pollution with inorganic contaminants
in Celje County, Slovenia. Groups of contaminants and polluted sites were
identified using cluster analysis and confirmed with multidimensional vari-
ance and discriminant analysis. Factor analysis yields an identification of
not directly observable relationships between the contaminants.

Relationships between soil bulk electrical conductivity and the principal
component analysis of topography and soil fertility values are presented in
the paper of Officer et al. [134]. Authors showed that PCA can be applied
to create meaningful field scale summaries of groups of attributes and to
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decrease the estimation error of maps of the summarized attributes.
Factor analysis of the properties of volcanic soil constituents was applied

by Meijer and P. Buurman [135]. The variation of fourteen soil chemical and
physical properties of twenty soil samples from Andosols was decomposed
into the contributions of seven soil constituents or end-members. The sam-
ples were from the slopes of the andesitic Turrialba volcano in Costa Rica.
Factor analysis of the data explained 98% of the variance by six orthogonal
factors.

Analysis of the relationship between soil and vegetation in forest biogeo-
cenoses was studied by Koptsik et al. [136]. Coordinated soil-geobotanical
studies revealed a close correlation between the species diversity of phy-
tocenoses and soil properties in the Russkii Sever National Nature Park
(Vologda oblast).

Factor analysis of nutrient distribution patterns under shrub live-oak in
two contrasting soils was applied by Brejda [137]. The objectives of this
research were to identify underlying patterns in soil properties using factor
analysis, and analyze factor scores to determine how the factor patterns
varied between soils, canopy covers, and depth. Factor analysis provided a
statistical tool for grouping the 11 correlated soil variables into three uncor-
related factors. Analysis of factor scores allowed independent assessment of
soils, shrub cover, depth, and their interactions on soil properties.

6.2 Geomorphology, geophysics and geochemistry

An advantage in regional geochemistry would be that instead of presenting
maps for 40-50 (or more) elements only maps of 4-6 factors may have to
be presented, containing a high percentage of the information of the single
element maps. Factor analysis was first applied to this problem in 1969 by
Garrett and Nichol [24] and Garret [138] to the interpretation of regional
geochemical stream sediment data. Chork [139] studied exploration cheo-
chemical data from sheeted-vein tin mineralization near Emmaville (N.W.S,
Australia), and Chork and Salminen [140] interpreted geochemical data from
Outokumpu (Finland).

Filzmoser [141] and Reimann [142] developed the methodical aspects of
using factor analysis in the geostatistical treatment of environmental data by
the usage of robust multivariate statistical methods in geostatistics. They
emphasized using robust principal component and factor analysis for the
preliminary investigation of the data to reduce the dimension. Geostatis-
tical methods were applied afterwards to the estimated factor scores. The
final results showed the influence of certain combinations of variables in the
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considered region. Moreover, the estimated factor scores with the robust
procedure indicate outlying observations in a much better way.

Problems of evaluating and weighting of geophysical data were presented
in the work of Chung and Nigam [143] using PCA. The purpose of this
paper was to encourage the use of field weighting over field interpolation
in achieving grid-area parity in principal component analysis of geophysical
data. While field weighting was shown to achieve exact parity in unrotated
analysis, authors showed that it is highly effective in rotated analysis, too.

Pereira et al. [144] proposed a methodology for study on geochemical
anomaly identification. Based on a case study in which a single geochem-
ical anomaly was located in the vicinity of an abandoned mine in Central
Portugal, a recursive methodology for anomaly/background separation was
developed. This methodology relies on the supplementary projection of each
of the samples taken from a subset of “anomaly candidates” onto the axes
provided by PCA of the background subset. The concept of “anomaly in-
tensity”, defined by the average of the distances from the original to the
supplementary projections, is the basis for final anomaly identification.

PCA was applied by Cuadrado and Perillo [145] to geomorphologic evo-
lution in the study of a sector of the main channel of the entrance to Bahía
Blanca system harbour (Argentina). El Toro channel, characterized by re-
current accumulation processes, had to be dredged periodically to maintain
the nominal depth of 10 m. Detailed surveys of the reach are made regu-
larly to check the navigation conditions. A set of survey charts made within
two dredging operations and covering about 1 year was analyzed by means
of PCA. The first principal component obtained from PCA describes the
mean depth of the area, while the second principal component explains the
morphological variations over time. From it, the accumulation periodicity
can be detected, and, therefore, the time of necessary dredging indicated.

Principal components of the topographical environment were studied by
Wotling et al. [146] by analyzing regionalization of extreme precipitation
distribution and dealing with the data of extreme rainfall intensities in the
volcanic island of Tahiti (French Polynesia). The paper showed how the
method automatically takes into account the topographical relief features.

Maldonado et al. [147] showed that the land use dynamics can be char-
acterized by PCA. The multitemporal analysis of changes in the Caatinga
land cover (Pernambuco State, North-East Brazil) provided sufficient in-
formation about the dynamics of this typical land use. Within this frame,
PCA was applied in combination with field survey data, which permitted
estimation of point samples of new recovery/degradation. Five classes of
changed and unchanged multitemporal effects were discriminated.
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7 Conclusion

As we could see, factor analysis is successfully used in various fields of envi-
ronmental sciences. Some of discussed methods have been especially devel-
oped for environmental studies.

The common approach of using factor analysis in environmental studies
leads to the synthesis of the following successive logical structure:

1. Dividing the system into sets of “elementary” components.

2. Analysis of the relations of these components in space or in time.

3. Revealing system-forming relations.

4. Description of the structure of the system (model) and its properties
(forecast).

Let us illustrate this scheme on the example of study of water quality
by the work of Bengraïne and Marhaba [86]. In this work various chemical,
biological, and physical data of the studied river were choosen as elementary
components. Matrix of realization of elementary components was observed
in space (along the river). Cross-correlations between these components were
chosen as objects of analysis. The purpose of analysis was to define system-
forming relations - factors associated with the hydrochemistry variability,
which are in these research - solute content, temperature, nutrients and
organics were the main patterns extracted.

Such or similar scheme was applied in the most of reviewed methods. It
demonstrates applicability and usefulness of factor analysis in environmental
studies. Taking into account a wide dissemination of using factor analysis
in these studies, one can confirm that in our days this approach should be
considered as one of the main techniques intended to the investigation of
the structural-functional organization of the system.

One should not, however, forget that factor analysis does not always give
a possibility of the pithy interpretation of factors. The interpretation must
be based on the data of a nature and properties of elements of the system,
obtained by other methods. Factor analysis in this sense is only a link among
the other stages of investigation; the connection with these links must be
always maintained, and only the whole chain can lead to the solution of a
problem [10]. Only the breadth of erudition of researchers and knowledge
of principles of the functional integration of investigated systems are able to
create a necessary basis for the objective interpretation of revealing factors.
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