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Abstract

One of characteristic properties of quasiconformal mappings is the
quasiinvariance of n-module. The quasiinvariance is crucial in various
applications. We provide here general conditions which are formulated
in terms of the inequalities for certain set functions.
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1 Introduction

In this paper we continue to investigate the classes of mappings with finite
mean dilatations. Our main goal is to generalize certain important classes
of mappings: quasiconformal, quasiconformal in mean, etc.

The theory quasiconformal mappings in the plane has been appeared on
the end of 1920-th in the works of Grötzsch and Lavrent’ev and is now a far
developed area of geometric function theory with extremely reach applica-
tions.

A concept of quasiconformality in Rn was introduced by Lavrent’ev in
1938 as a suitable tool to construct some mathematical models of certain
hydrodynamic problems. A point is that in multidimensional case the con-
ditions of comformality are very rigid and therefore the class of conformal
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mappings in Rn, n > 2, is narrow. Namely, by the fundamental Liouville
theorem (1850) the only conformal mappings are the Möbius mappings, that
is the finite compositions of reflections in spheres.

One of characteristic properties of quasiconformal mappings is a qua-
siinvariance of n-module of families of joining curves (or conformal capac-
ity). It states that the module of a curve family is changed under a K-
quasiconformal mapping only up to a factor at most K. All other properties
of K-quasiconformal mappings can be derived from this inequality for K-
quasiconformality (see, e.g., [1]). We shall consider more general inequalities
than the quasiinvariance of n-moduli.

An essential deficiency of the moduli methods is that the exact values
of moduli were found only for simple types of domains. In general case, one
only can estimate these moduli, and in the most cases these estimates are
not sharp. Moreover, these estimates do not exist for all values of parameter
p of p-module.

Another approach to investigation of generalized quasiconformal map-
pings involves some local geometric characteristics which are based on appro-
priate change of the radii of the normal neighborhood systems. We discuss
also the equivalence of the above methods. On other geometric methods, we
refer to the survey paper of Srebro [2].

2 Quasiconformal dilatations

Let A : Rn → Rn be a linear bijection. The numbers

HI(A) =
|detA|
ln(A)

, HO(A) =
Ln(A)

|detA| , H(A) =
L(A)

l(A)
,

are called the inner, the outer and the linear dilatations of A, respectively.
Here

l(A) = min
|h|=1

|Ah|, L(A) = max
|h|=1

|Ah|,

and detA is the determinant of A (see, e.g., [3]).
Obviously, all three dilatations are not less than 1. They have the fol-

lowing geometric interpretation. The image of the unit ball Bn under A is
an ellipsoid E(A). Let BI(A) and BO(A) be the inscribed and the circum-
scribed balls of E(A), respectively.

Then

HI(A) =
mE(A)

mBI(A)
, HO(A) =

mBO(A)

mE(A)
,
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and H(A) is the ratio of the greatest and the smallest semi-axis of E(A).
Here mA = mnA denotes the n-dimensional Lebesgue measure of a set A.

Let λ1 ≥ λ2 ≥ . . . ≥ λn be the semi-axes of E(A). Then

L(A) = λ1, l(A) = λn, |detA| = λ1 · . . . · λn,

and we can also write

HI(A) =
λ1 · . . . · λn−1

λn−1n

, HO(A) =
λn−11

λ2 · . . . · λn , H(A) =
λ1
λn

.

If n = 2 then HI(A) = HO(A) = H(A). In the general case, we have the
relations:

H(A) ≤ min(HI(A),HO(A)) ≤ Hn/2(A)

≤ max(HI(A),HO(A)) ≤ Hn−1(A).
(1)

Let G and G∗ be two bounded domains in Rn, n ≥ 2, and let a mapping
f : G → G∗ be differentiable at a point x ∈ G. This means there exists
a linear mapping f 0(x) : Rn → Rn, called the (strong) derivative of the
mapping f at x, such that

f(x+ h) = f(x) + f 0(x)h+ ω(x, h)|h|,

where ω(x, h)→ 0 as h→ 0.
We denote

HI(x, f) = HI(f
0(x)), HO(x, f) = HO(f

0(x)),

and

L(x, f) = L(f 0(x)), l(x, f) = l(f 0(x)), J(x, f) = det(f 0(x)).

Proposition 1. Let f : G → G∗ be a K-quasiconformal homeomorphism,
1 ≤ K <∞. Then

(i) f is ACL (absolutely continuous on lines);
(ii) f ∈W 1

n,loc(G) (Sobolev class);
(iii) for almost every x ∈ G,

HI(x, f) ≤ K, HO(x, f) ≤ K.
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3 Global characteristics of quasiconformality

Now we define the quasiconformality of homeomorphisms in other terms
(geometric or modular). Let Sk be a family of k-dimensional surfaces S
in Rn, 1 ≤ k ≤ n − 1 (curves for k = 1). S is a k-dimensional surface if
S : Ds → Rn is a homeomorphic image of the closed domain Ds ⊂ Rk.

The p-module of Sk is defined by

Mp(Sk) = inf
Z
Rn

ρp dx, p ≥ 1,

where the infimum is taken over all Borel measurable functions ρ ≥ 0 and
such that Z

Sρk dσk ≥ 1

for every S ∈ Sk. We call each such ρ to be an admissible function for Sk.
The following proposition characterizesK-quasiconformality in the terms

of n-moduli of Sk (see, e.g., [4], cf. [5]).
Proposition 2. A homeomorphism f of a domain G ⊂ Rn isK-quasiconfor-
mal, 1 ≤ K < ∞, if for any family Sk, 1 ≤ k ≤ n − 1, of k-dimensional
surfaces in G the double inequality

K
k−n
n−1Mn(Sk) ≤Mn(f(Sk)) ≤ K

n−k
n−1Mn(Sk),

holds.
For more details about geometric definitions of quasiconformality see

also [2].

A ring domain D ⊂ Rn is a finite domain whose complement consists of
two components C0 and C1. Setting F0 = ∂C0 and F1 = ∂C1, we obtain two
boundary components of D. For definiteness, let us assume that ∞ ∈ C1.

We say that a curve γ which joins the boundary components in D, if γ
lies in D excluding its endpoints, one of which lies on F0 and the second
on F1. A compact set Σ is said to separate the boundary components of
D if Σ ⊂ D and if C0 and C1 are located in different components of the
complement CΣ of Σ. Denote by ΓD the family of all locally rectifiable
curves γ, which join the boundary components ofD, and by ΣD the family of
all compact piecewise smooth (n−1)-dimensional surfaces Σ, which separate
the boundary components of D. For each quantity V associated with D such
as subset of D or a family of sets contained in D, we let V ∗ denote its image
under f .
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Theorem 1. A homeomorphism f : G → G∗ is K-quasiconformal (1 ≤
K <∞) if and only if there exists a constant K, 1 ≤ K <∞, such that for
any ring domain D ⊂ G either the inequalities

Mn
p (Σ

∗
D) ≤ K

p
n−1
¡
mD∗

¢n−p
Mp

n(ΣD),

Mn
q (ΣD) ≤ K

q
n−1
¡
mD

¢n−q
Mq

n(Σ
∗
D),

hold for n− 1 < p < q ≤ n or inequalities

Mp
n(Σ

∗
D) ≤ K

p
n−1
¡
mD

¢p−n
Mn

p (ΣD),

Mq
n(ΣD) ≤ K

q
n−1
¡
mD∗

¢q−n
Mn

q (Σ
∗
D),

hold for n ≤ p < q < (n− 1)2/(n− 2).
The proof of this theorem is given in [6].

4 Gehring’s characterization of quasiconformality

In 1973 Gehring proved the following important result

Gehring’s Lemma. Let G be an open subset of Rn and let 1 < p < ∞.
Suppose a nonnegative function h on G satisfies

−
Z
Q

hp ≤ Ap

µ
−
Z
Q

h

¶p

for all cubes Q ⊂ G with a constant Ap independent of the cube. Then there
exist a new exponent s > p and a constant As depending only on p, n and
Ap such that

−
Z
Q

hs ≤ As

µ
−
Z
Q

h

¶s

.

Here the symbol −
R
Q

h stands for the L1-mean of h over the cube Q,

−
Z
Q

h =
1

mQ

Z
Q

h.

In the same paper [7] Gehring derived the inequalities related to L1 and
Ln-means of the differential of K-quasiconformal mappings. He proved the
following result (see, also [8]).
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Integrability Theorem. Every K-quasiconformal mapping f : G → Rn

belongs to the Sobolev space W 1
p,loc with an exponent p = p(n,K) greater

than the dimension.

This theorem not only extends an earlier result of Bojarski [9] for the pla-
nar case but also gives a new characteristic property for K-quasiconformal
mappings.

An essential complement to Gehring’s result is given by Reshetnyak [10].

5 Generalized quasiconformal mappings

The classes of mappings quasiconformal in the mean are studied more than
40 years (see, e.g., [11]). One of recent developments in this field is provided
in [12].

Consider the quantities

HI,α(A) =
|J(A)|
lα(A)

, HO,α(A) =
Lα(A)

|J(A)| , α ≥ 1.

Such dilatations were applied in [6, 13-17]. For α = n, the values of HI,α(A)
and HO,α(A) coincide with HI(A) and HO(A), respectively.

We consider the homeomorphisms f which are differentiable almost every-
where in G and fix the real numbers α, β satisfying 1 ≤ α < β <∞. Put

HIα,β(f) =

Z
G

H
β

β−α
I,α (x, f) dx, HOα,β(f) =

Z
G

H
α

β−α
O,β (x, f) dx,

where HI,α(x, f) = HI,α(f
0(x)), HO,β(x, f) = HO,β(f

0(x)). We call these
values the inner and the outer mean dilatations of a mapping f of a given
domain G.

The main purpose to introduce the inner and outer mean dilatations
relies on the following theorem.

Theorem 2 ([18]). Let f : G→ G∗ be a homeomorphism satisfying:
(iv) f and f−1 are ACL;
(v) f and f−1 are differentiable a.e. in G and G∗, respectively;
(vi) the Jacobians J(x, f) and J(y, f−1) do not vanish a.e. in G and

G∗, respectively.
Then for every fixed values α, β, γ, δ such that 1 ≤ α < β <∞, 1 ≤ γ <

δ <∞, and for any ring domain D ⊂ G the inequalities

Mβ
α (S∗k) ≤ HIβ−αα,β (f)M

α
β (Sk),
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Mδ
γ (Sk) ≤ HOδ−γ

γ,δ (f)M
γ
δ (S∗k),

hold, where S∗k = f(Sk).
Define for the fixed real numbers α, β, γ, δ such that 1 ≤ α < β < ∞,

1 ≤ γ < δ <∞, the class B(G) of such homeomorphisms f : G→ G∗ which
satisfy:
(vii) f and f−1 are ACL-homeomorphisms,
(viii) f and f−1 are differentiable, with the Jacobians J(x, f) 6= 0 and
J(y, f−1) 6= 0 a.e. in G and G∗, respectively,
(ix) the inner and the outer mean dilatations HIα,β(f) and HOγ,δ(f) are
finite.

In other words, the class B(G) consists of mappings with finite mean
dilatations. The case β = δ = n was considered in [19].

It follows that for any f ∈ B(G), we have the equalities

HIα,β(f
−1) = HOα,β(f), HOα,β(f

−1) = HIα,β(f).

The relations (1) show that in the classical case of quasiconformal map-
pings, their dilatations are finite or infinity simultaneously. However, this
is not true for the mean dilatations. The following example shows that the
unboundedness of one of dilatations does not depend on the value of another
mean dilatation.

Example 1. Consider the unit cube

G = {x = (x1, . . . , xn) : 0 < xk < 1, k = 1, . . . , n},

and let

f(x) =

µ
x1, . . . , xn−1,

x1−cn

1− c

¶
, 0 < c < 1.

The calculation gives

HIα,β(f) =

Z
G

H
β

β−α
I,α (x, f) dx =

1Z
0

x
− cβ
β−α

n dxn,

HOγ,δ(f) =

Z
G

H
γ

δ−γ
O,δ (x, f) dx =

1Z
0

x
− c(δ−1)γ

δ−γ
n dxn,
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which yields

HIα,β(f) <∞ ⇐⇒ 0 < c < 1− α/β,

HIα,β(f) =∞ ⇐⇒ 1− α/β ≤ c < 1,

HOγ,δ(f) <∞ ⇐⇒ 0 < c < 1− (γ − 1)δ/(δ − 1)γ,

HOγ,δ(f) =∞ ⇐⇒ 1− (γ − 1)δ/(δ − 1)γ ≤ c < 1.

This allows us to choose the parameters c, α, β, γ, δ so that one obtains the
desired relations between HIα,β(f) and HOγ,δ(f).

6 Relationship between classes with finite mean
dilatations

The following theorems describe the relationship between the classes B(G).

Theorem 3. Suppose that α, β, γ, δ are fixed real numbers such that n−1 ≤
α < β <∞, n− 1 ≤ γ < δ <∞. Then the mappings of B(G) belong to the
Sobolev classes W 1

p,loc(G) and W 1
q,loc(G

∗) with p = max
¡
γ, β/(β − n + 1)

¢
and q = max

¡
α, δ/(δ − n+ 1)

¢
.

The proof of this theorem is given in [6].

Theorem 4. Let α, β, γ, δ, r, s, t, u be fixed real numbers such that 1 ≤ r <
α < β < s <∞ and 1 ≤ t < γ < δ < u <∞. Then

(a) B(G,G∗, α, β, γ, δ) ⊂ B(G,G∗, r, β, γ, δ),
(b) B(G,G∗, α, β, γ, δ) ⊂ B(G,G∗, α, s, γ, δ),
(c) B(G,G∗, α, β, γ, δ) ⊂ B(G,G∗, α, β, t, δ),
(d) B(G,G∗, α, β, γ, δ) ⊂ B(G,G∗, α, β, γ, u).

Example 2. Let n ≤ α < β < ∞ and n ≤ γ < δ < ∞. Fix two numbers
0 < a < 1 and p > 0 and consider two spherical systems of coordinates

(r, ϕi) and (ρ, ψi) on the n-dimensional balls B(0, a) and B
¡
0, a

γ−n
γ ln−p 1a

¢
respectively. Here B(x, h) = {y ∈ Rn : |y − x| < h} denotes n-dimensional
ball of radius h centered at x, Ωn = mB(0, 1), ωn−1 = mn−1B(0, 1)
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It is easy to verify that the mapping

g =

½
ρ = r

γ−n
γ ln−p

1

r
, 0 < r < a < 1, ψi = ϕi, 0 ≤ ϕi < π, i = 1, . . . , n− 2,

0 ≤ ϕn−1 < 2π, ρ(0) = 0
¾

moves the ball B(0, a) to B
¡
0, a

γ−n
γ ln−p 1a

¢
. Therefore, g and g−1 are dif-

ferentiable a.e. with nonzero Jacobians in B(0, a) and B
¡
0, a

γ−n
γ ln−p 1a

¢
,

respectively, which yields that the value

HOγ,δ(g) =

Z
B(0,a)

µ
Lδ(x, g)

|J(x, g)|
¶ γ

δ−γ
dx

= ωn−1

aZ
0

r
n(n−γ)
δ−γ −1 ln−

pγ(δ−n)
δ−γ 1

r

µ
γ − n

γ
+ ln−1

1

r

¶ γ
δ−γ

dr

is finite only when

n = γ and 0 < p ≤ δ

n(δ − n)
,

and HOγ,δ(g) =∞ for n < γ. Moreover,Z
B(0,a)

Lγ(x, g)dx = ωn−1

aZ
0

r−1 ln−pγ
1

r

µ
γ − n

γ
+ ln−1

1

r

¶γ

dr <∞

under p > 1/γ, which shows that this mapping, being in the Sobolev space
W 1

γ,loc does not belong to our class B(G).
Hence, for the indicated restrictions to parameters α, β, γ, δ the class

B(G) is a proper subset of W 1
γ,loc(G).

On the other hand,Z
B(0,a)

Lγ+ε(x, g)dx = ωn−1

aZ
0

r−1−
nε
γ ln−p(γ+ε)

1

r

µ
γ − n

γ
+ln−1

1

r

¶γ+ε

dr =∞

for any positive ε and p. Thus the mapping g belongs to the class B(G) for
1

n
≤ p ≤ δ

n(δ − n)
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andW 1
n,loc(G), but g does not belong forW

1
n+ε,loc(G). We conclude that the

Integrability Theorem does not hold for the class of mappings with finite
mean dilatations.

7 Global characterization of generalized quasi-
conformal mappings

We now establish the inequalities which generalize the quasiinvariance of
module in the case of homeomorphisms with finite mean dilatations and
derive some differential and geometric properties of such mappings.

To this end, we consider also certain set functions.
Let Φ be a finite nonnegative function in domain G defined for open

subsets E of G so that
mX
k=1

Φ(Ek) 6 Φ(E)

for any finite collection {Ek}mk=1 of nonintersecting open sets Ek ⊂ E. We
denote the class of such set functions Φ by F .

Now we introduce some new classes of homeomorphisms depending on
the values of parameters α, β, γ, δ and on the set functions.

Fix the numbers α, β, γ, δ which satisfy

n− 1 ≤ α < β <∞, n− 1 ≤ γ < δ <∞,

and assume that there exists a nonempty family of homeomorphisms f :
G→ G∗ such that there are two set functions Φ,Ψ ∈ F not depending from
f so that for each ring domain D ⊂ G the inequalities

Mβ
α (Σ

∗
D) ≤ Φβ−α(D)Mα

β (ΣD), (2)

M δ
γ (ΣD) ≤ Ψδ−γ(D)Mγ

δ (Σ
∗
D), (3)

hold.
The class of such homeomorphisms will be denoted byMS(G). (In fact,

it depends also on α, β, γ, δ.) Their main properties of this class are given
by following

Theorem 5 ([18]). Let n− 1 < α < β ≤ n and n− 1 < γ < δ ≤ n or

n ≤ α < β <
(n− 1)2
n− 2 and n ≤ γ < δ <

(n− 1)2
n− 2 .
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Then every mapping f ∈MS(G) admits the following properties:
(a0) f is ACL in G;
(b0) f−1 is ACL in G∗;

(c0) f ∈W 1
a,loc(G) with a = max

µ
γ, β/(β − n+ 1)

¶
;

(d0) f−1 ∈W 1
b,loc(G

∗) with b = max
µ
α, δ/(δ − n+ 1)

¶
.

Remarks.
1. It is enough only one inequality ((2) or (3)) to provide (a0) and (b0).
2. f and f−1 both possess N-property (see, e.g., [20]).
3. To characterize a quasiconformal mapping again enough only one

inequality ((2) or (3)) with α = β = n or γ = δ = n.
4. Another characterization of the class MS(G) can be given in the

terms of the moduli of ΓD instead of moduli of ΣD.

8 Local characterization of generalized quasi-
conformal mappings

Let x be an arbitrary point in Rn. Assume that some closed neighborhood
Gt(x) of x is defined for any t ∈ (0, 1]. We say that a set of the neighborhoods
Gt(x) of the point x constitutes a normal system, if there exists a continuous
function v : Rn → R such that v(x) = 0, v(y) > 0 for any y 6= x. Here
Gt(x) = {y ∈ Rn : v(y) ≤ t} for any t ∈ (0, 1]. Let Γt(x) = {y ∈ Rn :
v(y) = t} denote the boundary of Gt(x).

The function v is called the generating function for a given normal system
{Gt(x)}.

Denote

r(x, t) = inf
y∈Γt(x)

|y − x|, R(x, t) = sup
y∈Γt(x)

|y − x|.

These values r(x, t) and R(x, t) are equal, respectively, to the minimal and
the maximal radii of the neighborhood Gt(x). The limit

∆(x) = lim sup
t→0

R(x, t)
r(x, t)

is called the regularity parameter of the family {Gt(x), 0 < t ≤ 1}. Any such
system {Gt(x)} is called the regular normal system, provided ∆(x) <∞.
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Let f : G → G∗ be a homeomorphism and let {Gt(x)} be a normal
system of neighborhoods of x ∈ G. One can introduce similar to above the
minimal and the maximal radii for the image of Gt(x) by

r∗(x, t) = inf
y∈Γt(x)

|f(y)− f(x)|, R∗(x, t) = sup
y∈Γt(x)

|f(y)− f(x)|

and

∆∗(x) = lim sup
t→0

R∗(x, t)
r∗(x, t)

.

Yu.G. Reshetnyak [10] has investigated quasiconformal mappings of the
space domains using the radii of the normal regular system of neighborhoods.
He called a mapping f quasiconformal at a point x ∈ G if there exists a
normal regular system {Gt(x)} of neighborhoods of x such that∆(x)∆∗(x) <
∞.

The upper and lower derivatives of a set function Φ ∈ F at a point x ∈ G
are defined by

Φ0(x) = lim
h→0

sup
d(Q)<h

Φ(Q)

mQ
, Φ0(x) = lim

h→0
inf

d(Q)<h

Φ(Q)

mQ
,

where Q ranges over all open cubes and open balls such that x ∈ Q ⊂ G and
d(Q) = diamQ. Due to [21], these derivatives have the following properties:

(x) Φ0(x) and Φ0(x) are Borel’s functions;
(xi) Φ0(x) = Φ0(x) <∞ a.e. in G;
(xii) for each open set V ⊂ G,Z

V

Φ0(x) dx ≤ Φ(V ).

Using these set functions, we define for the fixed real numbers α, β, γ, δ
such that 1 ≤ α < β < ∞ and 1 ≤ γ < δ < ∞, the class H(G) of
homeomorphisms f : G→ G∗ which satisfy:

(xiii) there exist Φ,Ψ ∈ F in G,
(xiv) for any point x ∈ G there exists {Gt(x)} ⊂ G,
(xv) the inequalities

lim sup
t→0

mf(B(x,R(x, t)))Rα−n(x, t)
Ωnr∗α(x, t)

≤ £Φ0(x)¤β−αβ , (4)

lim sup
t→0

ΩnR∗δ(x, t)
mf(B(x, r(x, t)))rδ−n(x, t)

≤ £Ψ0(x)¤ δ−γγ . (5)

hold for all points x ∈ G at which the derivatives Φ0(x) and Ψ0(x) exist.

147



9 Equivalence of analytic and geometric descrip-
tions

We now are enable to establish that classes B(G) and H(G) are coincide.
The proof of this fact is accomplished in several steps and relies on an idea
of the classical Menshoff paper [22]. (See also [10]).

Lemma 1. Let f ∈ H(G), then f is ACL-mapping and is differentiable a.e.
in G.

Sketch of the proof. First, we show that f is ACL-mapping in G. Fix
for each x ∈ G a normal regular system {Gt(x)} of neighborhoods such that
Gt(x) ⊂ G for any t ∈ (0, 1]. Consider an arbitrary point a = (a1, . . . , an) ∈
G and h > 0 so that the cube Q̄ = Q̄(a, h) belongs to G, where Q(a, h) =
{x : |xi−ai| < h, i = 1, . . . , n}. Denote by Ck, k = 1, . . . , n, the intersection
of Q̄ with the plane Pk(a) = {x ∈ Rn : xk = ak}, and let p(x) be the segment
|xk − ak| ≤ h/2 of the line passing through x (x ∈ Ck) parallel to the kth
coordinate axis xk. Similarly, let p(A) denote the union of all segments p(x),
when A ⊂ Ck and x ∈ A.

We show that for almost all x ∈ Ck (with respect to (n− 1)-dimensional
Lebesgue measure) the restriction of f to p(x) admits the Lusin N -property.

Further, for x, x̃ ∈ G, x̃ 6= x, we define

k(x) = lim sup
x̃→x

|f(x̃)− f(x)|
|x̃− x| .

Then k(x) <∞ for almost all x ∈ G, and for any open set E ⊂ G we haveZ
E

k
β

β−n+1 (x) dx ≤
·
Φ(E)

¸ β−α
β−n+1

·
mf(E)

¸α−n+1
β−n+1

<∞,

Z
E

kγ(x) dx ≤
·
Φ(E)

¸ δ−γ
δ
·
mf(E)

¸γ
δ

<∞.

These inequalities allow us to the classical Stepanov theorem [23] on
differentiability and obtain that f is differentiable almost everywhere in G.

Lemma 2. Let f ∈ H(G), then HIα,β(f) and HOγ,δ(f) are finite.

Lemma 3. If f ∈ B(G), then f ∈ H(G).
The proofs of Lemmas 2 and 3 are similar to the corresponding lemmas

from [16]. Now we can now formulate the following theorem which is the
main result of this section.
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Theorem 6. The classes B(G) and H(G) coincide.
We now mention about some special cases. The first of them is the

standard quasiconformality in Rn. One can obtain the class of usual qua-
siconformal mappings not only when α = β = γ = δ = n, but also if the
following conditions hold:
(xvi) only one of pairs α, γ or β, δ is equal to n;
(xvii) the set functions of D are reduced to the product CmesE, where
mesE denote the Lebesgue n-measure on D or D∗.

We set

KI(x, {Gt(x)}) = lim sup
t→0

mf(B(x,R(x, t)))
Ωnr∗n(x, t)

,

and

KO(x, {Gt(x)}) = lim sup
t→0

ΩnR∗n(x, t)
mf(B(x, r(x, t)))

.

Theorem 7. A homeomorphism f : G → G∗ is quasiconformal in the
domain G if and only if for almost all x ∈ G there exist the normal regular
systems {Gt(x)} ⊂ G of neighborhoods of x which satisfy

KI(x, {Gt(x)}) ≤ K({Gt}) <∞, KO(x, {Gt(x)}) ≤ K({Gt}) <∞.

Put now

K = infK({Gt}),
where the infinum is taken over all such systems of neighborhoods. This
value is the quasiconformality coefficient of f in G.

In the planar case, n = 2, we obtain instead of (4),(5) the following
bounds

lim sup
t→0

R∗(x, t)
r(x, t)

µR(x, t)
r∗(x, t)

¶α−1
≤ £Φ0(x)¤β−αβ ,

lim sup
t→0

R(x, t)
r∗(x, t)

µR∗(x, t)
r(x, t)

¶δ−1
≤ £Ψ0(x)¤ δ−γγ .

In other words, we can characterize geometrically in terms of radii of
normal neighborhood systems many well-known classes of mappings (quasi-
conformal, quasiconformal in the mean, enc).
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