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Abstract

We evaluate the probability Pr(ξ1 ≤ ξ2) with ξ1 and ξ2 are non-
central chi-square random variables and find the closed form expression
for that probability.
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1 Introduction

In several problems of statistical theory of communications the necessity
arises to evaluate the probability Pr (ξ1 ≤ ξ2), where ξ1 and ξ2 are inde-
pendent random variables distributed according to “Noncentral Chi-square”
law. That probability is of interest for analyzing noise immunity of com-
munication systems [1,2], performance of synchronization systems [3] and
also for other areas, so that the problem is of rather common interest for
applications. This probability can be written as follows

Pr (ξ1 ≤ ξ2) =

∞Z
0

f1 (x1) dx1

∞Z
x1

f2 (x2) dx2. (1)
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with fi (x) (i = 1, 2) be ” Noncentral Chi-square” density having the
view [4]:

fi (x) = f (x, λi, Ni/2) =
1

2

µ
x

λi

¶Ni−2
4

exp

µ
−x+ λi

2

¶
INi
2
−1
³p

λix
´
,

(2)
where λi ≥ 0 is the noncentrality parameter, Ni is integer and referred to
as the number degrees of freedom.

The closed form expression for the integral (1) is known only for some
particular cases. So, if N1 = N2 = 2, then [1,2]

Pr (ξ1 ≤ ξ2) = Q

Ãr
λ2
2
,

r
λ1
2

!
− 1

2
exp

µ
−λ1 + λ2

2

¶
I0

µ
1

2

p
λ1λ2

¶
,

(3)
where

Q (x, y) =

∞Z
y

t exp

µ
−t

2 + x2

2

¶
I0 (xt) dx, (4)

.
is Marcum’s Q−function [5].

Also, the closed form is obtained for the case N1 = N2 = 2q (q is integer)
and λ2 = 0 (see [1,2] with reference to [6]):

Pr (ξ1 ≤ ξ2) = 2−q exp
µ
−λ1
4

¶ q−1X
k=0

2−kLq−1
k

µ
−λ1
4

¶
, (5)

where Lq−1
k (·) is Lagguer’s polynom.

If, however, λ1 and λ2 are arbitrary positive values, there is a represen-
tation in the form of infinite series,

Pr (ξ1 ≤ ξ2) = (6)

= 1 − 2−q exp
µ
−λ1 + λ2

4

¶ ∞X
m=0

(λ1/2)
m

m!

m+q−1X
k=0

2−kLq−1
k

µ
−λ2
4

¶
.

In some applications the necessity arises to find probability Pr (ξ1 ≤ ξ2)
in the case of N1 = 2q1, N2 = 2q2. Below closed expression will be obtained
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for the both cases (q1 = q2 and q1 6= q2). Note, the ” Noncentral Chi-square”
distribution is the special case of the law with density

f (x, λ, p) =
1

2

³x
λ

´ p−1
2
exp

µ
−x+ λ

2

¶
Ip−1

³√
λx
´
, (7)

where λ> 0, p > 0 are arbitrary real numbers [4].
Below we shall obtain the expression for Pr (ξ1 ≤ ξ2) in the case when

ξi (i = 1,2) follow the density (7).

2 Preliminary results

For derivation the formulas we need some properties of the density (7) and
the function Pr (ξ1 ≤ ξ2) = P (λ1, p1;λ2, p2), where λi, pi (i = 1, 2) are
the corresponding parameters of the density (7).

Property 1
Let p> 1, then

d

dx
f (x, λ, p) =

1

2
[f (x, λ, p− 1) − f (x, λ, p)] , (8)

where f(x, λ, p) is the density (7).
Proof follows immediately from the known property of the modyfied

Bessel function [7]:

d

dx
xνIν (x) = xνIν−1 (x) , (9)

where ν is an arbitrary real number.
Property 2
Let pi(i = 1, 2) be arbitrary real numbers, such that pi >1. Then

P (λ1, p1;λ2, p2) =
1

2
[P (λ1, p1; λ2, p2 − 1) + P (λ1, p1 − 1; λ2, p2)] (10)

Proof:
It follows from (8), that

f (x2, λ2, p2) = f (x2, λ2, p2 − 1) − 2 d

dx
f (x2, λ2, p2) . (11)

By using this connection in (1), we obtain
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P (λ1, p1; λ2, p2) = P (λ1, p1; λ2, p2 − 1) + 2

∞Z
0

f (x, λ1, p1) f (x, λ2, p2) dx

(12)
Evaluate the last integral by part:

2
∞R
0

f (x, λ1, p1)f (x2, λ2, p2) dx = −2f (x1, λ1, p1)
∞R
0

f (x2, λ2, p2)dx.

¯̄̄̄
¯̄ ∞
x1

+

+
∞R
0

h
d
dx1

f (x1, λ1, p1)
i
dx1

∞R
x1

f (x2, λ2, p2)dx2 =

P (λ1, p1 − 1;λ2, p2) − P (λ1, p1; λ2, p2) .

(13)
The last passage was realized with use of (8). Substitution (13) into (12)

proves (10).
Corollary
Let us p2 = p1 + n, n is natural. Then

P (λ1, p1;λ2, p2) = (14)

= P (λ1, p1; λ2, p1) +
n−1X
i=0

∞Z
0

f (x, λ1, p1)f (x, λ2, p1 + i− 1) dx

Proof follows from n - fold application of formula (12).
Property 3
Let us pi > 1 (i = 1, 2) are real numbers. Then

P (λ1, p1;λ2, p2) = P (λ1, p1 − 1;λ2, p2 − 1) +

+
∞R
0

[f (x, λ1, p1 − 1) f (x, λ1, p1) f (x, λ2, p2 − 1)]dx
(15)

Proof:
With use of (12) we obtain
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P (λ1, p1 − 1;λ2, p2) = (16)

= P (λ1, p1 − 1;λ2, p2 − 1) + 2

∞Z
0

f (x, λ1, p1 − 1)f (x, λ2, p2) dx

It follows from (12), that

2

∞Z
0

f (x, λ1, p1)f (x, λ2p2 − 1) dx = (17)

= P (λ1, p1 − 1; λ2, p2 − 1 ) − P (λ1, p1; λ2, p2 − 1)

Validity of (15) follows from (16) and (17) in view of (12).
Corollary
If p1 = p2 = q, q is natural, then

P (λ1, q;λ2, q) = P (λ1, 1; λ2, 1) +

+
q−1P
k=1

∞R
0

[f (x, λ1, k) f (x, λ2, k + 1) − f (x, λ1, k + 1) f (x, λ2, k)]dx

(18)

Property 4
Let us pi ≥ 0 (i = 1, 2) are real numbers. Then

P (λ1, p1;λ2, p2) = 2
∞X
k=0

∞Z
0

f (x, λ1, p1 + k + 1) f (x, λ2, p2)dx (19)

Proof:
It is evident, that (1) can be represented as follows:

P (λ1, p1;λ2, p2) =

∞Z
0

f (x, λ2, p2)dx

xZ
0

f (y, λ1, p1)dy. (20)

Using the known series [7],
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∞X
k=0

tkIk+ν (z) = z−ν exp
µ
tz

2

¶ zZ
0

τν exp

µ
− tτ

2z

¶
dτ, (21)

and the formula (7), it is easy to show, that

2
∞X
k=0

f (x, λ1, p1 + k + 1) =

xZ
0

f (y, λ1, p1)dy (22)

Substitution of (22) into (19) and changing order of integration and
summation prove validity of (19).

3 Basic results

Statement 1
Let us ξ1 and ξ2 are independent random values having density (2) and

parameters(λi, Ni)i=1,2 , N1 = N2 = 2q, q is natural. Then

Pr (ξ1 < ξ2) = P (λ1, q;λ2, q) = Q

µq
λ2
2 ,
q

λ1
2

¶
− 1

2 exp
³
−λ1+λ2

4

´
×

×
·
I0
¡
1
2

√
λ1λ2

¢ − q−1P
k=0

Ck,q
λk1−λk2
(λ1λ2)

1/k Ik
¡
1
2

√
λ1λ2

¢¸
,

(23)
where

Ck,q = 2−2k
q−k−1X
m=0

2−2m
k

m+ k

 2m+ 2k

m

 (24)

Proof
According to the corollary from the property 3 this probability can be

represented as follows:

P (λ1, q;λ2, q) = P (λ1, 1;λ2, 1) + ∆. (25)

Since the closed expression for P (λ1, 1;λ2, 1) is known (see formula (3)),
to demonstrate validity (23), (24) it is sufficient to evaluate ∆:
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∆ =

q−1X
k=1

∞Z
0

[f (x, λ1, k) f (x, λ2, k + 1)− f (x, λ1, k + 1) f (x, λ2, k)]dx

(26)
Substitute the density (2) into (26) and change the variable for integra-

tion z =
√
x. Then

∆ = 1
2 exp

³
−λ1+λ2

2

´ q−1P
k=1

[ λ
−(k−1)/2
1 λ

−k/2
2

∞R
0

z2k exp
¡ −z2¢ Ik ¡z√λ2¢Ik−1 ¡z√λ1¢ dz−

−λ−k/21 λ
−(k−1)/2
2

∞R
0

z2k exp
¡ −z2¢ Ik

¡
z
√
λ1
¢
Ik−1

¡
z
√
λ2
¢
dz ]

(27)

The integrals from (27) are evaluated in appendix 3. After substitution
the results of these evaluations into (27), we obtain:

∆ =
1

2
exp

µ
− λ1 − λ2

4

¶ q−1X
k=1

2−2k× (28)

×
k.X

m=−k−1

µ
2k − 1
k − 1−m

¶"µ
λ1
λ2

¶m/2

−
µ
λ2
λ1

¶m/2
#
Im

µ
1

2

p
λ1λ2

¶
Now we can evaluate formulas (23) and (24) from (3), (25) and (28) if

to take into account that the modified Bessel functions are even for integer
index and to use the following evidential identities:µ

a
b

¶
=

b+ 1

a− b

µ
a
b+ 1

¶
;

µ
a− 1
b

¶
=

a− b

a

µ
a
b

¶
.

Some identities for sums with binomial coefficients are proved in appen-
dices 1 and 2. With help of these it can obtain the following representations
for values Ck,qdetermined by (24):

Ck,q = 2
−(q+k−1)

q−k+1X
m=0

2−m
µ

m+ q + k − 1
m

¶
, (29)
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Ck,q = 2
−2(q−1)

q−k+1X
m=0

µ
2q − 1
m

¶
, (30)

Ck.q = 2
B1/2 (q + k, q − k)

B (q + k, q − k)
, (31)

whereBx (a, b) , B (a, b) are incomplete and complete beta functions corre-
spondingly.

Note that at λ2 → 0, the expression (20) reduces to formula (4). For
demonstration of that it is sufficient to use the representation (26), Lagguer’s
polynoms determination

Lα
n (y) =

nX
m=0

µ
n+ α
n−m

¶
( −y)m
m!

, (32)

Marcum’s Q- function limit value [2],

limQ (x, y) = exp
³
−y2

2

´
x→ 0

, (33)

and modified Bessel functions asymptotic values [7],

Ik (y) ≈ (y/2)k

k !
y → 0

. (34)

Statement 2
Let ξ1 and ξ2 are independent random values with density (2) and pa-

rameters (λi, Ni)i=1,2, N1 = 2q1 < N2 = 2q2, qi (i = 1, 2) are natural.
Then

Pr (ξ1 < ξ2) = P (λ1, q1; λ2, q2) =

= P (λ1, q1;λ2, q1) + exp
³
−λ1+λ2

4

´ q2−1P
m=−q1+1

³
λ1
λ2

´m/2×

×Im
¡
1
2

√
λ1λ2

¢ q2−1P
i=max(q1,m)

2−(q1+i)
µ

q1 + i− 1
q1 +m− 1

¶ (35)

Proof
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Using the corollary from property 2, we shall represent the considered
probability in the following form:

P (λ1, q1; λ2, q2) = P (λ1, q1; λ2, q1) + ∆, (36)

where

∆ = 2

q2−q1−1X
i=0

∞Z
0

f (x, λ1, q) f (x, λ2, q1 + i+ 1) dx. (37)

Substitute the expression for density (2) into (36). Then after some
transformations value ∆ may be reduced to sum of the integrals, evaluated
in Appendix 3. It will lead us to the following expression:

∆ = exp
³
−λ1+λ2

4

´ q2−q−1P
i=0

2−(2q1+i)×

×
q1+iP

m=−q1+1

µ
2q1 + i − 1
m + q1 − 1

¶³
λ1
λ2

´m/2
Im
¡
1
2

√
λ1λ2

¢
=

= exp
³
−λ1+λ2

4

´ q2−1P
m=−q+11

³
λ1
λ2

´m/2
Im
¡
1
2

√
λ1λ2

¢×
×

q−12P
i=max(q,m1)

2−(q+i1)
µ

i+ q1 − 1
m+ q1 − 1

¶
(38)

The validity of (35) follows from (38) and (36).
Statement 3
Let ξ1 and ξ2 are independent random values with density (2) and pa-

rameters (λi, Ni)i=1,2, N1 = 2q1, N2 = 2q2, qi (i = 1, 2) are natural. Then

Pr (ξ1 < ξ2) = P (λ1, q1;λ2, q2) =

= Q

µq
λ1
2 ,
q

λ2
2

¶
+ 1

2 exp
³
−λ1+λ2

4

´
×

×
½
q2−1P
m=1

Cm−k,q
³
λ1
λ2

´m/2
Im
¡
1
2

√
λ1λ2

¢−
−

q1−1P
m=0

Cm+k,q

³
λ2
λ2

´m/2
Im
¡
1
2

√
λ1λ2

¢¾
,

(39)
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where

k = (q1 − q2)/2, q = (q1 + q2)/2, (40)

and Cm−k,q, Cm+k,q are the coefficients, determined by (29)-(31).
Proof
At first we will prove validity of (39) for the case q1< q2. For that we

use the representation of the probability in form (36) and (38). The value
∆ may be written as the sum:

∆ = A+B (41)

where

A = exp

µ
−λ1 + λ2

4

¶
× (42)

×
q−1X

m=−q1+1

µ
λ1
λ2

¶m/2

Im

µ
1

2

p
λ1λ2

¶ q2−1X
i=q1

2−(q+i)
µ

i + q1 − 1
m+ q1 − 1

¶
,

B = exp

µ
−λ1 + λ2

4

¶
× (43)

×
q2−1X
m=q1

µ
λ1
λ2

¶m/2

Im

µ
1

2

p
λ1λ2

¶ q2−1X
i=m

2−(q1−i)
µ

i+ q1 − 1
m+ q1 − 1

¶
.

Using (29), from (42) and (43) we obtain

A = 1
2 exp

³
−λ1+λ2

4

´
×

×
½
q1−1P
m=0

³
λ2
λ1

´m/2

I−m
¡
1
2

√
λ1λ2

¢ ¡
C−(k+m),q − C−m,q1

¢
+

+
q1−1P
m=1

³
λ1
λ2

´m/2
Im
¡
1
2

√
λ1λ2

¢
(Cm−k,q − Cm,q1)

¾
,

(44)

B =
1

2
exp

µ
−λ1 + λ2

4

¶ q2−1X
m=q1

µ
λ1
λ2

¶m/2

Im

µ
1

2

p
λ1λ2

¶
. (45)
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The values k and q from (44) and (45) are determined by (40).
It is demonstrated in Appendix 2, that

C−(k+m),q = 2− Ck+m,q; C−m,k = 2 − Cm,k (46)

It is easy to obtain from (30) or (31), that

C0,q = 1 (47)

Since I−m (x) = Im (x), substitution of (45) and (47) into (44) brings
the following expression:

A = 1
2 exp

³
−λ1+λ2

4

´©
I0
¡
1
2

√
λ1λ2

¢ − q1−1P
m=1

Cm,q1
λm1 −λm2
(λ1λ2)

m/2 Im
¡
1
2

√
λ1λ2

¢ −
−

q1−1P
m=0

Cm−k,q
³
λ1
λ2

´m/2
Im
¡
1
2

√
λ1λ2

¢ − q1−1P
m=0

Cm+k,q

³
λ2
λ1

´m/2
Im
¡
1
2

√
λ1λ2

¢
(48)

Substitutions of (45) and (48) into (41) and also (23) and (41) into (38)
prove the validity of (39) for the event q1< q2.

Now, let q1 > q2. We use the evidential equality:

P (λ1, q1;λ2, q2) = 1 − P (λ2, q2; λ1, q1) . (49)

The validity of (39) for P (λ2, q2;λ1, q1) has been proved. Now, if to
substitute the known expression for P (λ2, q2; λ1, q1) to (45), to take into
consideration (47) and, also, the known property of Marcum’s Q- function
[2]:

Q (x, y) + Q (y, x) = 1 + exp

µ
−x

2 + y2

2

¶
I0 (x, y) , (50)

the validity of (38) may be easy proved for the event q1< q2.
It is evident that for q1 = q2, (23) and (38) coincide. The equivalence

of (28), (31) for that case ifk and qare integer or half-integer coincidentally
(q ≥ 1, |k| ≤ q − 1)is proved in Appendix 2.

Statement 4
Let ξ1 and ξ2 are independent random values with density (7) and pa-

rameters (λi, pi)i=1,2, λi, pi are nonnegative numbers. Then probability
P (ξ1 < ξ2) is
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P (λ1, p1;λ2, p2) = exp

µ
−λ1 + λ2

2

¶
× (51)

×
∞X

m=0

∞X
n=0

.
.
³
λ1
2

´m ³
λ2
2

´n
m!n!

S (p1 +m, p2 + n).

with

S (x, y) =
B1/2 (x, y)

B (x, y)
. (52)

Proof
Substitute the density (7) into (19) and fulfill change of the variable

y =
√
x. Then

P (λ1, p1;λ2, p2) = λ
−p1/2
1 .λ

− (p2−1)/2
2 ×

× exp
³
−λ1+λ2

2

´ ∞P
k=0

∞R
0

yp1+p2+k exp
¡ −y2¢×

×Ip1+k
¡
y
√
λ1
¢
Ip2−1

¡
y
√
λ2
¢
dy

(53)

The integral from (53) is known [7] :

∞R
0

xα−1 exp
¡ −px2¢ Iµ (bx) Iν (cx) dx =

=
bµcνp−.(µ+ν+α)/2

2µ+ν+1Γ (ν + 1)

∞P
k=0

Γ (k + (α+ µ+ ν) /2)

Γ (µ+ k + 1)

µ
b2

4p

¶k

×

×2F1
³
−k,− (µ+ k) , ν + 1, c

2

b2

´
(54)

Substitute integral (54) into (44) with following meanings of the para-
meters:

b =
√
λ1, c =

√
λ2, µ = p1 + k, ν = p2 − 1, α = p1 + p2 + k + 1, p =

1.Then
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P (λ1, p1;λ2, p2) =

=
2−(p1+p2)

Γ (p2)
exp

³
−λ1+λ2

2

´ ∞P
k=0

∞P
k1=0

2−(k+k1)
Γ (k + k1 + p1 + p2)

k1!Γ (k + k1 + p1 + 1)
×

×
³
λ2
2

´k1
2F1

³
−k1,−p1,−k − k1, p2,

λ2
λ1

´
(55)

Now we use the polynomial form of the hypergeometrical function and
take into account absolute convergence of the series. Then

P (λ1, p1;λ2, p2) =

= 2−(p1+p2) exp
³
−λ1+λ2

2

´ ∞P
k1=0

k1P
n=0

2−k1 Γ( k1+p1+p2)
Γ(p2+n)Γ(k1+ p1−n+1) ×

× (λ1/2)
k1−n(λ2/2)n

n! (k1−n)! 2F1
¡
1, p1 + p2 + k1, p1 + k1 − n+ 1, 12

¢
(56)

Substitute the known representation of Hypergeometrical Gauss function
[7],

2F1 (1, b, c, z) = z1−c (1− z)1−c (1− z)c−1 (c− 1)Bz (c− 1, b− c+ 1) ,
(57)

into (56), where Bz (x, y) be uncomplete beta-function Then, after simple
transformations, (56) takes the following form:

P (λ1, p1;λ2, p2) = (58)

= exp

µ
−λ1 + λ2

2

¶ ∞X
k1=0

k1X
n=0

(λ1/2)
k1−n (λ2/2)n

n! (k1 − n)!
S (p1 + k + n, p2 + n) ,

where functionS(x, y) is determined by (52).
By changingm = k1− n, (58) is reduced to (51). Note, that the recursive

formulas and expansion to continued fraction exist for S(x, y) [7].
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4 Additional results

Integrals
In the course of demonstrating of the results above we obtained closed

form for the following integral:

∞R
0

xk+l+1 exp
¡ −px2¢ Ik (ax) Il (bx) dx = (2p)−(p+l+1) akbl exp

³
a2+b2

4p

´
×

×
kP

i=−l

µ
k + l
i+ l

¶¡
b
a

¢i
Ii

³
ab
2p

´
(59)

where k, l are integer, such that k ≥ 0, |l| ≤ k.
The deduction of (59) is brought in Appendix 3 as having no direct

relation to the treated problem. With usage of (59) the following integral
was evaluated:

∞R
0

xM exp
³
−px2

2

´
IM−1 (cx)QM (b, ax) dx = 1

c

³
c
p2

´M
exp

³
c2

2p2

´
×

×
(
QM (U, V ) − exp

³
−U2+V 2

2

´ M−1P
k=−(M−1)

BZ(M−k,M+k)
B(M−k,M+k)

¡
V
U

¢k
Ik (UV )

)
(60)

where QM (U,V ) is so-called QM - function [2],

U =
bpp

p2 + a2
, V =

ac

p
p
p2 + a2

, Z =
a2

p2 + a2
.

Derivation of (60) is brought in Appendix 4. Formula (59) can complete
the table of integrals with QM -function [1].

Transformation of a known formula
In order to illustrate the usage of our finding, transform the formula for

probability of errors when autocorrelation demodulation of binary DPSK
signals is performed under the carrier detuning ( [2], formula (8.18)):

Pb =
1

2.q
exp

¡ −2h22 − h21
¢ ∞X
n=0

¡
2h22

¢n
n!

q+n−1X
k=0

1

2k

kX
m=0

¡
h21
¢m

m !

µ
k + q − 1
k −m

¶
(61)
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(61) is obtained as the For the details of the evaluation of that formula
the authors of [2] refer to [8], where result of transformation for the following
starting formula:

Pb =
1
22q

exp
£ −2 ¡h21 + h22

¢¤
h1−q
1 h1−q2

∞R
0

x
(q−1)/2
2 e−x2/2Iq−1

¡
2h2
√
x2
¢
dx2 ×

×
x2R
0

x
(q−1)/2
1 e−x1/2Iq−1

¡
2h1
√
x1
¢
dx1

(62)
Denote λ1 = (4h1)

2 , λ2 = (2h2)
2. Then it may be rewritten as follows:

Pb =
∞R
0

1
2

³
x2
λ2

´(q−1)/2
exp

³
x2+λ2
2

´
Iq−1

¡√
λ2x2

¢
dx2 ×

×
x2R
0

1
2

³
x1
λ2

´(q−1)/2
exp

³
x1+λ1
2

´
Iq−1

¡√
λ1x1

¢
dx1.

(63)

.
The latter is probability of the inequality x1 < x2, where x1 and x2 are

“Noncentral χ2” random variables with parameters of noncentrality λ1and
λ2 and the numbers of degrees of freedom are equal to 2q. Hence the con-
ditions of the Statement 1 are valid and instead of the infinite series (60)
we can use formula (23).

5 Conclusion

In the paper we obtained the closed form expression for probability Pr(ξ1 ≤
ξ2 ) with ξ1 and ξ2 are noncentral chi-square random variables with even
number degrees of freedom, which is of considerable important under eval-
uation reliability of networks. For the case add number of degrees the chi-
square density is expressed by elementary functions and corresponding com-
putations do not represent any difficulties.
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Appendix 1

Statement 5
Let k and q are natural, such that k ≤ q − 1. Then it is valid

Ck,q = 2−2k
q−k−1X
m=0

2−2m
k

m+ k

 2m+ 2k

m

 = (64)

= 2−(q+k−1)
q−k−1X
m=0

2−m
 m+ q + k − 1

m

 .

Proof
First we shall demonstrate that (5) is reduced to the expression, coin-

ciding with (20), within coefficients.
Introduce the notations:

z =
λ1
2
, x =

λ2
4
, M =

N − 2
2

= q − 1 (65)

Represent the internal sum in (6) in the following form:

m+MX
k=0

2−(k+M+1)LM
k ( −x) = (66)

=
M−1X
k=0

2−(k+M+1)LM
k ( −x) +2−(2M+1)

mX
k=0

LM
k+M ( −x).

Substitute (66) into (6). Then

Pr (ξ1 2 ξ2) = 1 − 2−(M+1) exp ( −x)× (67)

×
M−1X
k=0

2−kLM
k ( −x) − 2−(2M+1) exp [ − (x+ z)] G (z, x) ,

where

G (z, x) =
∞X

m=0

zm

m!

mX
k=0

2−kLM
k+M ( −x) . (68)
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It is obvious, that function G(x, z) satisfies the following integral equa-
tion:

G (z, x) = H (z, x) +

zZ
0

G (t, x) dt, (69)

where

H (z, x) =
∞X

m=0

(z/2)m

m!
LM
m+M ( −x) . (70)

By solving equation (68) we obtain the following representation

G (z, x) = H (z, x) + exp (z)

zZ
0

exp ( −t)H (t, x) dt. (71)

It follows from (70), that

H (z, x) =
d2M

dy2M

(
yM

∞X
m=0

ym

(m+M) !
LM
m ( −x)

)
y=z/2

. (72)

The internal series in (72) is the generating function for Lagguer’s poly-
noms [7]:

∞X
m=0

ym

(m+M)!
LM
m ( −x) = (xy)−M/2 exp (y) Im (2

√
xy) . (73)

By substitution of (73) into (72) we obtain

H (z, x) =
d2M

dy2M

½³y
x

´M/2
exp ( −y) Im (2√xy)

¾
y=z/2

. (74)

After substitution (74) into (71) and 2M -fold integration by part, ex-
pression (71) takes the following form:
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G (z, x) = 2M
½
2MP
i=0
2−i d

i

dyi

h¡ y
x

¢M/2
exp (y) IM

¡
2
√
xy
¢i

y=z/2
−

− exp (z)
2M−1P
i=0

2− i di

dyi

h¡ y
x

¢M/2
exp (y) IM

¡
2
√
xy
¢i

y=0
+

+ 2 exp (z)
z/2R
0

¡
t
2

¢M/2
exp ( −z) IM

¡
2
√
xt
¢
dt

)
.

(75)

Transform (75) by M−fold integration by part with usage formulas
(9),(32) and (34) and taking into account the evenness of modified Bessel
function respect to integer index. Then substitute the obtained expression
into (67). Then

Pr (ξ1 < ξ2) = 1− exp ( −x)
z/2R
0

exp ( −t) I0
¡
2
√
xt
¢
dt+

+1
2 exp ( −x− z/2)

MP
k=1

h¡
z
2x

¢k/2
(2− C−k,M+1)−

¡
z
2x

¢−z/2
Ck,M+1

i
Ik
¡
2
p

xz
2

¢−
+1
2 exp ( −x− z/2) I0

¡
2
p

xz
2

¢
,

(76)
where the coefficients Ck,M+1 are given by expression (64).

It follows from determination of Q-function [1,2] that

1 − exp ( −x)
z/2Z
0

exp ( −t) I0
³
z
√
xt
´
dt = Q

³√
2z ,
√
z
´
. (77)

Also it is shown in Appendix 2, that

C−k,M+1 + Ck,M+1 = 2 (78)

Taking into account notation (65), we obtain from (76) - (78):

Pr (ξ1 2 ξ2) = Q

µq
λ2
2 ,
q

λ1
2

¶
+ 1

2 exp
³
−λ1+λ2

4

´
×

×
·
−I0

¡
1
2

√
λ1λ2

¢
+

q−1P
k=0

Ck,q
λk1−λk2
(λ1λ2)

k/2 I0
¡
1
2

√
λ1 λ2

¢¸
,

(79)

169



where

Ck,q = 2−(q+k−1)
q−k−1X
m=0

2−m
 m+ q + k − 1

m

 . (80)

As (79) identically equals to (23) for each permissible values of parame-
ters λ1 andλ2, the validity of (64) is proved.

Appendix 2

Statement 6
Let q and k are integer or half-integer coincidentally such, that q ≥ 1,

?k? ≤ q- 1. Then

Ck,q = 2
B1/2 (q + k, q − k)

B (q + k, q − k)
= (81)

= 2−(q+k− 1)
q+k− 1X
m=0

2−m

µ
m+ q + k − 1
m

¶
Proof
Denote

a = q − k, b = q + k, 1− z = 1/2. (82)

According to the known property of incomplete beta-function [7], rewrite
the left-side of (81) in the following form

Ck,q = 2

µ
1− Bz (a, b)

B (a, b)

¶
. (83)

Use now the expression (57). Then

Bz (a, b) =
1

a
za (1− z)b 2F1 (1, a + b, a+ 1, z) . (84)

Since [7]

2F1 (1, l, n, z) = (n − 1)! ( − z)1−n ( −1)1−ı̂ 1

(1− l)n
× (85)

×
"
(1− z)n−l−1 −

n−2X
m=0

(l − n+ 1)m
m!

zm

#
,

170



where l = a+ b, n = a + 1 are natural (l ≥ n), after some transformations,
(82) takes the following form:

Bz (a, b) = B (a, b)

"
1 − (1 − z)b

a−1X
m=0

µ
b+m− 1
m

¶
zm

#
. (86)

Now, if to take into consideration notation (82), then (81) follows from
(83) and (86). Also the following property of coefficients Ck,q can be readily
extracted from (81)- (83):

C−k,q + Ck,q = 2. (87)

Statement 7
Coefficients Ck,q have the following equivavelent to (81) representation:

Ck,q = 2−2(q−1)
q−k−1X
m=0

µ
2q − 1
m

¶
. (88)

Proof
Consider the following function:

Ck,q = f (N1, N2) = 2−N2
N1X
m=0

2−m
µ

m+N2
m

¶
, (89)

with

N1 = q − k − 1,N2 = q + k − 1. (90)

Use the following known connection:µ
m + N2
m

¶
=

µ
m+ N2 + 1
m

¶
−
µ

m + N2
m − 1

¶
. (91)

After some transformations we obtain

f (N1,N2) − f (N1 + 1, N2 + 1) = 2−(N1+N2)
µ

N1 +N2 + 1
N2

¶
. (92)

It is evident, (76) can be represented in following form:
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f (N1, N2) =

N1X
i=0

f (N1 − i, N2 + i) −
N−11X
i=0

f (N1 − i − 1, N2 + i+ 1).

(93)
According to (89),

f ( −1, N1 + N2) = 0, (94)

and therefore (93) takes the form

f (N1, N2) =

N1X
i=0

(f (N1 − i, N2 + i)− f (N1 − i − 1, N2 + i + 1)).

(95)
After substitution (87) into (89) and changing the summation index, we

obtain

f (N1, N2) = 2−(N1+N2)
N1X
m=0

2−m
µ

N1 +N2 + 1
m

¶
. (96)

The equivalence (81) and (88) follows from (96).

Appendix 3

Evaluation of the integral

B =

∞Z
0

xk+l+1 exp
¡ −px2¢ Ik (ax) Il (bx) dx, (97)

where k, l are integers ( k ≥ 0, |l| ≤ k) and a, b, p a are real positive
numbers.

Introduce the following parameters:

g = a2
±
4, h = b2

±
4 (98)

and change the integration variable y = x2,

B =
1

2
gk/2hl/2

∞Z
0

exp ( −py)ϕ (y, k, g)ϕ (y, l, h) dy, (99)
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where

ϕ (z, n, c) = (z/c)n/2 In
¡
2
√
cz
¢
. (100)

Fulfill (k + l) -fold integration by parts. Then

B = A +
1

2
gk/2hl/2p−(k+ l)

∞Z
0

exp ( −py) d
k+l

dyk+ l
[ϕ (y, k, g) ϕ (y, l, h)] dy,

(101)
with

A = −1
2
gk/2hl/2

k+lX
m=1

p−m
½
exp ( −py) dk+l

dyk+l
[ϕ (y, k, g) ϕ (y, l, h)]

¾∞
y=0

.

(102)
Using (9), it is simple to show, that

dm

dzm
ϕ (z, n, c) = ϕ (z, n −m, c) . (103)

With usage of (34) and the known asymptotic representation [7]

In (z) → 1√
2πz

exp (z)

z →∞ , (104)

we obtain from (101)-(103), that A = 0 and

B =
1

2
gk/2hl/2p−(k+l)

X
m=0

µ
k + l
m

¶
× (105)

×
∞Z
0

exp (−py)ϕ (y, k −m, g)ϕ (y,m− k, h) dy.

Now, after substitution (100) into (105) and inverse changing x =
√
y

B = p−(k+l)
X
m=0

µ
k + l
m

¶
gm/2h(l+k−m)/2 × (106)

×
∞Z
0

x exp
¡ −px2¢ Ik−m (2x√g) Im−k ³2x√h´ dx.
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Since for integer n, In (z) = I−n (z) , we can use the known formula for
the integral in (106) [7]:

∞Z
0

x exp
¡ −px2¢ Ik−m (2x√g) Im−k ³2x√h´ dx = (107)

=
1

2p
exp

µ
g + h

p

¶
Im−k

µ
2

p

p
gh

¶
.

It follows from (106) and (107) with accounting denote (92), that

B = (2p)−(k+ l+1) exp

µ
a2 + b2

4p

¶
× (108)

×
k+lX
m=0

µ
k + l
m

¶
ambl+k−mIm−k

µ
ab

2p

¶
.

Changing the summation index i = k −m and using (107), we obtain

B = (2p)−(k+ l+1) exp

µ
a2 + b2

4p

¶
akbl × (109)

×
kX

i=−l

µ
k + l
i+ l

¶µ
b

a

¶i

Ii

µ
ab

2p

¶
.

The correctness of (59) follows from (97) and (109).

Appendix 4

Evaluation of the integral

A =

∞Z
0

xM exp

µ
− p2x2

2

¶
IM−1 (cx)QM (b, ax) dx (110)

where M is arbitrary natural, a, b, c, p, are real positive numbers,

QM (x, y) =

∞Z
y

t

µ
t

x

¶M−1
exp

µ
−t

2 + x2

2

¶
IM−1 (xt) dt (111)
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is so-called QM -function (Q1 is Marcum’s Q-function).
For QM -function the representation exists, following from (111):

QM(x, y) = Q (x, y) + exp

µ
x2 + y2

2

¶ M−1X
k=1

³y
x

´k
Ik (xy) . (112)

Also the following property of QM -function is known, which simply
deduced from (112) and (50):

QM(x, y) +QM(y, x) = 1+ exp

µ
x2 + y2

2

¶ M−1X
k=−(M−1)

µ
x

y

¶k

Ik (xy) . (113)

Convey QM (b,ax) with use QM (ax , b) on the base of (113) and substi-
tute into (110). Then for integral A we can write:

A = B −D +E (114)

where [5]

B =

∞Z
0

xM exp

µ
−p

2x2

2

¶
IM−1 (cx) dx =

1

c

µ
c

p2

¶M

exp

µ
c2

2p2

¶
, (115)

and

D =
∞R
0

xM exp
³
−p2x2

2

´
IM−1 (cx) QM (ax, b) dx =

= 1
c

³
c
p2

´M
exp

³
c2

2p2

´
QM

µ
ac

p
√
p2+a2

, bp√
p2+a2

¶ , (116)

E = exp

µ
−b

2

2

¶ M−1X
k=−(M−1)

³a
b

´k ∞Z
0

xM+k× (117)

× exp
Ã
−x

2
¡
p2 + a2

¢
2

!
IM−1 (cx) Ik (abx) dx,
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The integral from (117) was evaluated in Appendix 3.Thus, by substi-
tuting (59) into (117), changing the order of summation and integration and
using (107), we obtain

E = 1
c

³
c

p2+a2

´M
exp

³
c2−p2b2
2(p2+ a2)

´ M−1P
k=−(M−1)

³
ac

b(p2+a2)

´k×
Ik

³
abc

p2+a2

´M−k−1P
i=0

 M + k + i− 1

i

 ³
a2

p2+a2

´i
.

(118)

With usage of (86), (118) can be rewritten as follows:

E = 1
c

³
c
p2

´M
exp

³
c2−p2b2
2(p2+ a2)

´ M−1P
k=−(M−1)

³
ac
bp2

´k
Ik

³
abc

p2+ a2

´
×

×
h
1− Bz(M−k,M+k)

B(M−k,M+k)

i
,

(119)

where z = a2

p2+a2
.

It follows from (115) and (116) with accounting (113), that

B −D = 1
c

³
c
p2

´M ½
exp

³
c
p2

´
QM

µ
bp√
p2+a2

, ac

p
√
p2+a2

¶
−

− exp
³

c2−p2b2
2(p2+a2)

´ M−1P
k=−(M−1)

³
ac
bp2

´k
Ik

³
abc

p2+a2

´)
.

(120)

The substitution of (191) and (120) into (114) brings:

A = 1
c

³
c
p2

´M
exp

³
c
p2

´ n
QM (U, V )− exp

³
−U2+V 2

2

´
×

×
M−1P

k=−(M−1)

h
1− Bz(M−k,M+k)

B(M−k,M+k)

i ¡
V
U

¢k
Ik (V U)

)
,

(121)

where

U =
bpp

p2 + a2
, V =

ac

p
p
p2 + a2

, z =
a2

p2 + a2
. (122)
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The validity of (60) follows from (110), (121) and (122).
Note, that with using of the following property of incomplete beta-

function [7], Bz (x, y) = 1 − B(1−z) (y, x), and also (107) and (112), integral
(110) can be represented in the following form:

A =
1

c

µ
c

p2

¶M

exp

µ
c

p2

¶
× (123)

×
"
−β0I0 (UV ) +

M−1X
k=1

αkV
2k − U2k

(UV )k
Ik (UV )

#)

where αk =
B(1−z) (M − k,M + k)

B (M − k,M + k)
, βk =

Bz (M − k,M + k)

B (M − k,M + k)
and U, V, z

are determined by expression (122).
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