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Abstract

We present a variational approach for the computation of dense cor-
respondence between three rectified images. Using rectification allows
reducing the problem to a single parameter functional. Classically, the
functional is composed of a data term and a regularization term. We
introduce an improved model, where the pixel wise data term is com-
bined with a template matching approach, which is well adapted to
the case of rectified images. This modification increases the accuracy
significantly.
The minimization is practically handled by solving the Euler-Lagrange

equation. In our setting, the Euler-Lagrange equation is replaced by
a parabolic evolution equation. Under general assumptions, we prove
that this equation has a single asymptotic state, that is obtained by
any initial guess.
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1 Introduction

Recent works used a variational approach to recover a dense disparity map
from a set of two weakly calibrated stereoscopic images [2, 3]. In this con-
text, the computation of this apparent motion, the optical flow, uses the
fundamental matrix [4], to relate corresponding pixels in the two views. An
energy term is minimized, taking into account the geometric constraint de-
fined by the fundamental matrix, as well as the intensity information with an
appropriate regularization term. The associated Euler-Lagrange equations
allow to solve this minimization problem, and so to find the speed vector.

More images bring more information and so, more accuracy in the results.
In this work we shall use the generalization of the fundamental matrix to
three views, the trilinear tensor [6]. Moreover, the rectification embeds the
geometric information provided by the trifocal tensor. We shall investigate
more in depth this approach by using a triplet of rectified images, produced
by the method of Zhang [7] and his team, after the work of Hartley [8]. In
the framework of the variational approach, it allows us to compute only one
Euler-Lagrange equation to solve the problem of minimization.

We shall first in Section 2 present the rectification method we used. Then
in Section 3, the minimization problem is presented, with the mathematical
foundation. Finally, some experiments are shown in Section 4.

2 Rectification

The use of the process of rectification is of major importance on practical
applications. It consists in re-sampling pairs of stereo images taken from
different viewpoints in order to produce a pair of "matched epipolar projec-
tions". In the case of three images, a conventional disposition is a reference
bottom image, a second right image, and finally a top image. Concerning
the bottom and right images, there are projections in which the epipolar
lines run parallel to the x-axis and consequently, disparities between the
images are in the x direction only. In practice, the epipolar lines are to be
transformed to lines parallel to the x-axis, then the epipoles of each image
should be mapped to points at infinity (with a third coordinate equals to
0). Which can be done with the x-axis works obviously with the y-axis, and
so, concerning the bottom and top images, we can map the epipoles to the
points at infinity in the same way. The question is to find a good projective
transformation H to map the epipoles to points at infinity.

We use here the results of Zhang and his team [7], by posing three con-
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straints on the trinocular rectification. The rectified images are denoted as:
b̄ (bottom, the bar means rectified image), r̄ (right) and t̄ (top), respec-
tively. The three constraints can be described as follows: images b̄, r̄ and t̄
are rectified if:

1. All the epipolar lines of images b̄ and r̄ are horizontal and the corre-
sponding points have the same y-coordinate.

2. All the epipolar lines of images b̄ and t̄ are vertical and the correspond-
ing points have the same x-coordinate.

3. For any triplet of corresponding points (p̄b, p̄r and p̄t), the disparity u
between p̄b,p̄r and p̄b,p̄t is equal.

We have so, for p̄b = (x, y) in b̄, the corresponding point p̄r = (x+ u, y)
in r̄, and the corresponding point p̄t = (x, y + u) in t̄.

For convenience, the canonical fundamental matrices of the rectified im-
ages are used to represent the rectification constraints. Considering the
three rectified image pairs b̄r̄, b̄t̄ and r̄t̄, the fundamental matrices to obtain
are:

F̄br '
 0 0 1

0 0 0
−1 0 0

 , F̄bt '
 0 0 0
0 0 −1
0 1 0

 , F̄rt '
 0 0 1

0 0 1
−1 −1 0

 (1)

where ' means "equal up to a non-zero scale".

We need three rectification homographies Hb, Hr, Ht that make the
fundamental matrices have the form (1) and can be parametrized by a set
of independent free parameters over which it is possible to minimize the
distortion. Following [7], we therefore have

HT
r F̄brHb = λ1Fbr, HT

t F̄btHb = λ2Fbt, HT
t F̄rtHr = λ3Frt, (2)

for some non-zero λ1, λ2,λ3. Furthermore, the homographies have to map
the epipoles to infinity. This leads to direct expression for the last row of each
homography matrix. Thus, the equation set (2) is a linear under-constrained
problem with 6 degrees of freedom. One can exploit the fact that the set
of solutions is infinite in order to enforce additional geometric constraints,
that minimizes the distortion generally caused by the rectification (for more
details see [5]).
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3 Energy minimization and anisotropic diffusion

3.1 Correspondence finding

Finding dense correspondences between images is a difficult problem. One
has to find for each pixel in the first image, where the corresponding pixel is
in the second (and third image). Therefore a measure of similarity has to be
used in order to maximize the similarity between corresponding pixels. If we
denote by Ij(x, y) the intensity of the image j at pixel (x, y), the optimization
problem can be formulated as the minimization of

P
i,j(Ij(x

0, y0)−Ik(x, y))2,
where (x0, y0) is the corresponding pixel of (x, y).

This minimization problem can be handled either a local approach [9]
or a global approach [10]. It is well known that global methods produce
a more consistent motion between nearby pixels, but are less efficient for
discontinuities preservation. Therefore in order to improve results obtained
by global methods at image discontinuities, Nagel and Enkelmann proposed
to replace the isotropic regularization term found in [10], by an anisotropic
operator [13]. More details are given in Section 3.3.

In the case, two rectified images are used, these ingredients are combined
in [2, 3]. In the sequel, we show how the framework introduced in [2] can be
generalized to three rectified images with some further improvement. Since
our approach consists in minimizing a global functional on the image, we
shall first recall some basic facts.

3.2 Energy minimization

Following [11], we summarize the modeling assumptions used in the sequel
and define the matching problem in the context of the calculus of variations.
We consider two images intensities Iσ1 = I1 ∗Gσ and Iσ2 = I2 ∗Gσ at a given
scale σ, i.e. resulting from the convolution of two square-integrable functions
I1 : R2 → R and I2 : R2 → R with a Gaussian kernel of standard deviation
σ. Given a region of interest Ω, a bounded region of R2, (we may require
its boundary ∂Ω to fulfill some regularity constraints, e.g. that of being of
class C2), we look for a function u : Ω→ R2 assigning to each point x in Ω
a displacement vector u(x) ∈ R2. This function is searched for in a set F of
admissible functions such that it minimizes an energy functional E : F→ R
of the form :

E(u) = J(u) +R(u) (3)

where J(u) measures the "similarity" between Iσ1 and I
σ
2 o(Id+u) and R(u)

is a measure of the "irregularity" of u (Id is the identity mapping of R2).
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The similarity term will be defined in terms of global or local statistical
measures on the intensities of Iσ1 and I

σ
2 o(Id+u), and the irregularity term

will generally be a measure of the variations of u in Ω. In summary, the
matching problem is defined as the solution of the following minimization
problem:

u∗ = argmin
u∈F

E(u) = argmin
u∈F

(J(u) +R(u)) (4)

Assuming that E is sufficiently regular, its first variation at u ∈ F in the
direction of h ∈ F is defined by :

δE(u, h) = lim
ε→0

E(u+ �h)−E(u)
�

=
dE(u+ �h)

d�

¯̄̄
�=0

If a minimizer u∗ of E exists, then δE(u∗, h) = 0 must hold for every h ∈ F.
Assuming that F is a linear subspace of a Hilbert space H, endowed with a
scalar product (., .)H, we define the gradient ∇HE(u) of E by requiring that

∀h ∈ F, dE(u+ �h)

d�

¯̄̄
�=0

= (∇HE(u), h)H

The Euler equations are then equivalent to ∇HE(u∗) = 0. Rather than solv-
ing them directly, the search for a minimizer of E is done using a "gradient
descent" strategy. Given an initial estimate u0 ∈ H, we introduce time and
a differentiable function, also noted u from the interval [0, T ] into H (we say
that u ∈ C1([0, T ]; H)) and we solve the following initial value problem:½

du
dt = −∇HE(u) = −(∇HJ(u) +∇HR(u))
u(0)(.) = u0(.)

(5)

That is, we start from the initial field u0 and follow the gradient of the
functional E (the minus sign is because we are minimizing). The solution
of the matching problem is then taken as the asymptotic state (i.e. when
t→∞) of u(t).

Consequently, equation (5) may be viewed as a first-order ordinary dif-
ferential equation with values in H. It turns out that studying it from such
an abstract viewpoint allows to prove the existence and uniqueness of sev-
eral types of solutions (mild, strong, classical) of (5), by borrowing tools
from functional analysis and the theory of semi-groups of linear operators.
In the present Section, we study the generic minimization flow within this
abstract framework. The linear operator −∇HR(u) defined by the regu-
larization term will be simply noted A and the non-linear matching term
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−∇HJ will be generically noted F . The unknown of the problem is an H
valued function u : [0,+∞[→ H defined on R+.
We want here to establish the properties required by A and F in order for
equation (5), which is now written as a semi-linear abstract initial value
problem of the form :½

du
dt −Au(t) = F (u(t)), t > 0
u(0) = u0 ∈ H (6)

to have a unique solution. For this purpose, we shall use the following
notations. Let D(A) be the domain of A and SA be the corresponding
semi-group (see [1]).

A continuous solution u of the integral equation

u(t) = SA(t)u0 +

Z t

0
SA(t− s)F (u(s))ds

is called a mild solution of the initial value problem (6). The last definition
is motivated by the following argument. If (6) has a classical solution then
the H valued function k(s) = SA(t − s)u(s) is differentiable for 0 < s < t
and, thanks to the theorem claiming that for all u ∈ D(A), we have SA(t)u ∈
D(A) and d

dtSA(t)u = ASA(t)u = SA(t)Au (Theorem 1.2.4 in [12]):

dk

ds
= −ASA(t− s)u(s) + SA(t− s)u0(s)

= −ASA(t− s)u(s)+SA(t− s)Au(s)+SA(t− s)F (u(s)) = SA(t− s)F (u(s))
If F ◦ u ∈ L1([0, T [,H) then SA(t − s)F (u(s)) is integrable and integrating
(3.2) from 0 to t yields

k(t)− k(0) = u(t)− SA(t)u0 =

Z t

0
SA(t− s)F (u(s))ds

hence

u(t) = SA(t)u0 +

Z t

0
SA(t− s)F (u(s))ds

The definition of the mild solution is thus natural. Sufficient conditions on
A and F for (6) to have a unique mild solution are given by the following
theorem.

Theorem 1. Let F : H →H be uniformly Lipschitz continuous on H and
let −A be a maximal monotone operator. Then the initial value problem (6)
has a unique mild solution u ∈ C([0, T [,H). Moreover, the mapping u0 → u
is Lipschitz continuous from H into C([0, T [,H).
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The proof can be found for example in Theorem 6.1.2 of [12]. Since H is a
Hilbert space, taking an initial value u0 ∈ D(A) suffices to obtain existence
and uniqueness of a strong solution.

3.3 Anisotropic Diffusion

The diffusion allows to homogenize a picture. In image processing, the dif-
fusion eliminates the local perturbations of the signal. This is why we use
in previous section a convolution with a Gaussian. The inconvenient is that
the iterations make the contours more and more blurred. The diffusion has
to be uniform far from the contours, and perpendicular to the gradient on
the contours, which is meant by "anisotropic". The key idea is so to forbid
regularizing and smoothing across the discontinuities. We consider the term
R(u) from equation (3).
The regularization operator we will use was introduced by Nagel and Enkel-
mann [13], and is expressed as :

R(u) = (
∂u

∂x
,
∂u

∂y
) ·D(∇I1) ·

µ ∂u
∂x
∂u
∂y

¶
(7)

with I1 the function describing the first image intensity, D(∇I1) a regular-
ized projection matrix perpendicular to ∇I1:

D(∇I1) = 1

|∇I1|2 + 2ν2
"Ã

∂I1
∂y

−∂I1
∂x

!Ã
∂I1
∂y

−∂I1
∂x

!t

+ ν2Id

#
(8)

Therefore we have the following limit:

lim
k∇I1k→0

D(∇I1) = 1

2
Id

On the other hand, when k∇I1k→∞, then D(∇I1) become the projec-
tion operator over the direction orthogonal to the gradient.
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The resulting effect is that the variation of the displacement is minimized
in the direction orthogonal to the gradient of the first image at each pixel.
This allows a smoothing effect along the objects boundaries, while preserving
these boundaries.

3.4 Euler-Lagrange equation and parabolic equation

We are now in a position to introduce a first instance of the functional that
we shall minimize as in the general problem given by (4). An improved model
will be introduced in Section 3.5. We consider three rectified images. The
rectification assumption is equivalent to assume that the three cameras are
organized in a perfect L shape with same distances within the horizontal and
vertical pairs. In order to make notation even more concrete and following
notations used in Section 2, we shall denote the rectified image intensities
functions by b, r and t, which stands for bottom, right and top, the three
camera locations in our setting. Since rectification is used, the pixel motion
field is described by a single parameter u which a real-valued function of two
parameters, as explained in Section 2. Hence the Euler-Lagrange equation
will also contain only one unknown. Finally, the energy term to minimize
is:

E(u) =
RR
b̄ L(u,

∂u
∂x ,

∂u
∂y )dxdy =

RR
b̄

³
kr(x+ u(x, y), y)− b(x, y)k2

+kt(x, y + u(x, y))− b(x, y)k2
+kr(x+ u(x, y), y)− t(x, y + u(x, y))k2

´
dxdy

+C
RR
b̄R(u)dxdy,

(9)
where C is a constant that and the associated Euler-Lagrange equation is
∂L
∂u − ∂

∂x(
∂L
∂ux
)− ∂

∂y (
∂L
∂uy
) = 0.

The part term − ∂
∂x(

∂L
∂ux
) − ∂

∂y (
∂L
∂uy
) is related to the regularization op-

erator. After computation, it is given by C.div(D(∇b)∇u) = 0. Thus, the
following equation has to be solved :

2 ∂r∂x(x+ u, y)
£
2r(x+ u, y)− t(x, y + u)− b(x, y)¤

+2∂t∂y (x, y + u)
£
2t(x, y + u)− r(x+ u, y)− b(x, y)¤

−Cdiv(D(∇b)∇u) = 0
(10)

We have now to compute the asymptotic state when t → ∞ of the
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corresponding parabolic equation:

∂u
∂t = −2 ∂r∂x(x+ u, y)

£
2r(x+ u, y)− t(x, y + u)− b(x, y)¤

−2∂t∂y (x, y + u)
£
2t(x, y + u)− r(x+ u, y)− b(x, y)¤

+Cdiv(D(∇b)∇u)
(11)

We will prove here the convergence to this asymptotic state and its
uniqueness, by using the theorem of Section3.2. We shall look for a solution
u in H = L2(R2). Let F : H −→ H be defined as follows:

F (u) = −2∂rσ∂x (x+ u, y)
£
2rσ(x+ u, y)− tσ(x, y + u)− bσ(x, y)¤

−2∂tσ∂x (x, y + u)
£
2tσ(x, y + u)− rσ(x+ u, y)− bσ(x, y)¤

Moreover let A : D(A) ⊂ H −→ H be the differential operator defined
as follows:

A(u) = −Cdiv(D(∇bσ)∇u)

Then the system obtained by blurring (11) can be written in a compact
form, together with the initial guess, and has actually the form of equation
(6): ½

∂u
∂t +A(u) = F (u)
u(0) = u0

The image functions are defined in a bounded domain. For simplicity, we
shall consider them as defined on the whole plane. More, we shall consider
that b, r, t ∈ L2(R2), which is physically amply justified.

Theorem 2. Under the assumption that b, r, t ∈ L2(R2), the function F is
Lipschitz-continuous, and the Lipschitz constant L depends on the functions
b, r, t and σ.

Proof. Since b, r, t ∈ L2(R2), we have rσ, tσ ∈ W 1,2(R2) and bσ, tσ ∈
L∞(R2), where W 1,2(R2) denotes the Sobolev space:

W 1,2(R2) =

 u ∈ L2(R2)

¯̄̄̄
¯̄ ∃g1, g2 ∈ L2(R2),∀φ ∈ C∞c (R2),R

R2
∂u
∂xφ

0 = − RR2 g1φ,R
R2

∂u
∂yφ

0 = − RR2 g2φ
 ,

where C∞c (R2) denotes the space of infinitely derivablepoints at infinity func-
tions that are zero outside a compact domain.

186



Thus it clear that rσ, tσ ∈ W 1,2(R2), because after the smoothing with
a Gaussian filter, we obtain infinity derivable functions. Smoothing the im-
ages, which are basically bounded, also results in bounded functions. There-
fore bσ, tσ ∈ L∞(R2).

In the sequel, we shall denote F1(u) = −2∂rσ∂x (x+ u, y)
£
2rσ(x+ u, y) −

tσ(x, y+ u)− bσ(x, y)¤ and F2(u) = −2∂tσ∂x (x, y+ u)
£
2tσ(x, y+ u)− rσ(x+

u, y) − bσ(x, y)¤, so that F (u) = F1(u) + F2(u).Now, consider u1, u2 ∈ H.
We have the following estimate (the norm k . k is k . kL2(R2)) k F (u1) −
F (u2) k≤k F1(u1) − F1(u2) k + k F2(u1) − F2(u2) k. Therefore let us first
exhibit an upper bound of k F1(u1)− F1(u2) k.

k F1(u1)− F2(u2) k=
k 2∂rσ

∂x
(x+ u1, y)

£
2rσ(x+ u1, y)− tσ(x, y + u1)− bσ(x, y)

¤−
2∂r

σ

∂x
(x+ u2, y)

£
2rσ(x+ u2, y)− tσ(x, y + u2)− bσ(x, y)

¤ k
≤k 4∂rσ

∂x
(x+ u1, y)r

σ(x+ u1, y)− 4∂rσ∂x
(x+ u2, y)r

σ(x+ u2, y) k

+ k bσ(x, y)£2∂rσ
∂x
(x+ u1, y)− 2∂rσ∂x

(x+ u2, y)
¤ k

+ k 2∂rσ
∂x
(x+ u1, y)t

σ(x, y + u1)− 2∂rσ∂x
(x+ u2, y)t

σ(x, y + u2) k

≤ 2 k ∂(rσ)2

∂x
(x+ u1, y)− ∂(rσ)2

∂x
(x+ u2, y) k

+2 k bσ k∞k ∂rσ

∂x
(x+ u1, y)− ∂rσ

∂x
(x+ u2, y) k

+2 k tσ k∞k ∂rσ

∂x
(x+ u1, y)− ∂rσ

∂x
(x+ u2, y) k

≤ 2Clip(
∂(rσ)2

∂x
) k u1 − u2 k +2 k bσ k∞ Clip(

∂rσ

∂x
) k u1 − u2 k

+2 k tσ k∞ Clip(
∂rσ

∂x
) k u1 − u2 k

≤ 2(Clip(
∂(rσ)2

∂x
)+ k bσ k∞ Clip(

∂rσ

∂x
)+ k tσ k∞ Clip(

∂rσ

∂x
)) k u1 − u2 k,

where Clip(f) is the Lipschitz constant of the function f . It is clear that

Clip(
∂(rσ)2

∂x ) and Clip(
∂rσ

∂x ) exists since
∂(rσ)2

∂x , ∂r
σ

∂x ∈W 1,2(R2).
Eventually, a Lipschitz constant of F1 is given by :

Clip(F ) = 2(Clip(
∂(rσ)2

∂x
)+ k bσ k∞ Clip(

∂rσ

∂x
)+ k tσ k∞ Clip(

∂rσ

∂x
)).
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Similarly, we could found a Lipschitz constant of F2: points at infinity

Clip(F ) = 2(Clip(
∂(tσ)2

∂x
)+ k bσ k∞ Clip(

∂tσ

∂x
)+ k rσ k∞ Clip(

∂tσ

∂x
)).

A Lipschitz constant for F is simply the sum of the two previous constant.

Since b ∈ L2(R2), then bσ ∈ W 1,∞(R2). Thus ∇bσ is bounded and
the eigenvalues of D(∇bσ) are strictly positive. Therefore since C > 0, the
operator A is a maximal monotone operator. Then using, theorem 1, we
can conclude by the following result.

Theorem 3. The system (6) has a unique mild solution for any initial
guess.

3.5 An improved model

The energy defined by expression (9) uses a mere difference between the
intensities of corresponding pixels. In order to make the correspondence
finding more robust, the use of a local region around each pixel is necessary.
In [14], this is handled by requiring not only the intensities constancy but
also the gradient constancy. The drawback of this approach is that it requires
the computation of second order image derivatives in the Euler-Lagrange
equation. Here we adopt another approach, the data termRR

b̄

³
kr(x+ u(x, y), y)− b(x, y)k2 + kt(x, y + u(x, y))− b(x, y)k2

+kr(x+ u(x, y), y)− t(x, y + u(x, y))k2
´
dxdy

is replaced byRR
b̄

Pi=n
i=−n

Pj=n
j=−n

³
kr(x+ u(x, y) + i, y + j)− b(x+ i, y + j)k2

+kt(x+ i, y + u(x, y) + j)− b(x+ i, y + j)k2
+kr(x+ u(x, y) + i, y + j)− t(x+ i, y + u(x, y) + j)k2

´
dxdy

,

where 2n+1 is the size of the square neighborhood of each pixel. We found
that using 2n + 1 = 3 yields optimal results. It is straight forward to see
that the proof in theorem 2 also holds for this improved model. Therefore
theorem 3 is also valid.
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3.6 Numeric scheme

For the numerical solution for the system (6), we shall use a finite difference
scheme. In this section, we shall denote by (i, j) the grid vertexes on which
we compute the flow. The derivative with respect to time is given by:

uk+1ij − ukij
τ

,

where τ is the time step. Following [2], we use the following scheme for the
regularization term:

div(D(∇bσ)∇u) ≈

ai+1,j+ai,j
2

uk+1i+1,j−uk+1i,j

h21
+

ai−1,j+ai,j
2

uk+1i−1,j−uk+1i,j

h21

+
ci,j+1+ci,j

2

uk+1i,j+1−uk+1i,j

h22
+

ci,j−1+ci,j
2

uk+1i,j−1−uk+1i,j

h22

+
bi+1,j+1+bi,j

2

uk+1i+1,j+1−uk+1i,j

2h1h2
+

bi−1,j−1+bi,j
2

uk+1i−1,j−1−uk+1i,j

2h1h2

− bi+1,j−1+bi,j
2

uk+1i+1,j−1−uk+1i,j

2h1h2
− bi−1,j+1+bi,j

2

uk+1i−1,j+1−uk+1i,j

2h1h2

,

where D(∇bσ) =
µ

a b
b c

¶
.

Each component of the data similarity term in the first component term
is approximated as follows:

−2∂rσ∂x (x+ u, y)
£
2rσ(x+ u, y)− tσ(x, y + u)− bσ(x, y)¤ ≈

−2∂rσ∂x (i+ ukij , j)
£
2rσ(i+ ukij , j) + 2(u

k+1
ij − ukij)

∂rσ

∂x (i+ ukij , j)

−t(i, j + ukij)− (uk+1ij − ukij)
∂t
∂y (i, j + ukij)− bσ(i, j)

¤
The values for the images and their derivatives outside of the grid points

are computed by interpolation. Eventually, we get an implicit scheme that
leads to solve a large sparse linear system: Ax = b. For solving this system,
since the matrix A is typically very large and sparse, an iterative method
is used. We use the Gauss-Seidel iteration. If A = L + D + U , where L
(respectively U) is a strictly lower (respectively upper) triangular matrix,
while D is a diagonal matrix, then the iteration is performed as follows:

xn+1 = −(D − L)−1Uxn + (D − L)−1b

Moreover in order to speed up the computations and to handle large
displacement, we embed the scheme into a mutliresolution approach [10].
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4 Experiments

We present here the results obtained with the improved model over three
rectified images. Fig. 1 presents the three rectified images.

Figure 1: Three rectified images.

In Fig. 2 we show the results. Fig. 2a, the disparity is rendered as a
gray-level images, while Figs. 2b and 2c shows the respectively the second
and the third image after backward warping toward the first image, using
the computed disparity.

The quality of these results is more precisely handled by some statis-
tical data. In the following measures, the images are normalized so that
the gray-levels values are between 0 and 1. Thus when we come to com-
pare the original image 1 and the re-sampling of images 2 and 3 based the
computed disparity, the two difference images have values between -1 and 1
at most. For the difference computed with the first and the second image,
we found the following values: the minimum is -0.992157, the maximum
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0.996078, while the mean value and the standard deviation are respectively
µ12 = 0.0119701 and σ12 = 0.121034. For the difference computed using the
first and third images , we found similar values: the minimum and maxi-
mum are stricly identical, while the mean value and the standard deviation
are respectively µ13 = 0.0138003 and σ13 = 0.102947. In both cases, the
statistical measures show that the computed disparity yields a high quality
resampling.

Figure 2: The results computed with the improved model. (a) The rendered
disperity; (b) the warping of the second image; (c) the warping of the third
image.
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5 Future work and discussion

We have present a complete and mathematical consistent way to handle the
problem of correspondence finding between three images. Future work will
incorporate more efficient numeric techniques like multigrid [15]. We shall
also investigate the way to deal with more than three images at once.
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