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Abstract

The paper develops a recent Coifman’s approach to the problems
of Signal and Image Processing, based on spectral theory of operators
in Hilbert spaces. New notion of canvas is introduced. This allows to
use powerful tools of Operator Ideal Theory which, in turn, leads to a
numerical algorithm for restoring the original image.

1 Introduction

Recently R. Coifman, see in particular, [1], proposed a new approach to re-
ducing dimension of data appeared in image processing. He used for this goal
a new function space generated by a few geometric harmonics, i.e., eigen-
functions of some positive integral operator acting in an infinite-dimensional
Hilbert space. These eigenfunctions can be found as extreme points of the
corresponding quadratic form on the Hilbert space. In the present paper we
suggest a modification of the above Coifman idea in order to find the func-
tion spaces for data representation with optimal, in some sense, dimension.
We make this by solving a series of extreme points problems which increase
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the require dimension step to step. To avoid technical complications we con-
sider here only a simple model related to the space of functions continuous
on Rn.

2 A feature space or canvas

Definition 1. A Hilbert space H embedded into the space C(Rn) of bounded
continuous functions on Rn is called a canvas.

Every canvas generates a mapping from Rn to the space H as follows.
Each q ∈ Rn generates the valuation functional δq ∈ C(Rn)∗ whose restric-
tion to H can be represented by the F.Riesz theorem as

f(q) = δq(f) = hf, a(q)iH , f ∈ H,

here a : Rn 7→ H is a weak continuous bounded vector function, which gives
the required mapping. Conversely, every such a generates some canvas;
namely, the required imbedding of H to C(Rn) is defined by sending an
element h ∈ H to the continuous function q 7→ hh, a(q)iH . Hence, a(q) may
be seen as δ-function on the space H.
Examples of canvases.
1o. The most natural example of a canvas is the Sobolev spaceW s

2 (Rn) with
the smoothness s > n/2, since W s

2 (Rn) ⊂ C(Rn).
2o. R. Coifman [1] considers the space of bandlimited functions Lδ

2(Rn)
consisting of square integrable functions on Rn, whose Fourier transforms
are supported by the ball of radius δ. Clearly, this space is a canvas.
3o. A finite dimensional subspace in C(Rn) can be regarded as a canvas.
For this end it is necessary to fix some scalar product on such a space.
4o. The following example is also due to R. Coifman. Let K(s, t) be positive
definite bounded continuous function on Rn×Rn. Consider the linear span
HK of the family of functions {K(·, t) : t ∈ Rn}. This can be related to a
bilinear form by the following formula.

If x(q) =
Pn

i=1 λiK(q, si) and y(q) =
Pm

j=1 µjK(q, tj) then

hx, yi = h
nX
i=1

λiK(·, si),
mX
j=1

µjK(·, tj)i

=

n,mX
i,j=1

λiµjK(si, tj).
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It is easily seen that this definition is well-defined and that h·, ·iH is a
semidefinite.

Let us show that actually we obtain a scalar product on HK and that
HK is continuously imbedded into C(Rn).

Consider a vector-valued function a : Rn → HK defined by

a(q)(·) = K(q, ·),

where q ∈ Rn. By the definition, ka(q)k2HK
= hK(q, ·),K(q, ·)i = K(q, q) ≤

C. The space HK is embedded into C(Rn) by x 7→ hx, a(q)i with the esti-
mate

khx, a(·)ikC(Rn) ≤ CkxkHK
.

which follows from the Schwartz inequality. Moreover, the map x 7→ hx, a(q)i
is the identity. Indeed,

hx, a(q)i = h
nX
i=1

λiK(·, si),K(·, q)i =
nX
i=1

λiK(q, si) = x(q).

Hence, this bilinear form is not degenerate and actually defines the scalar
product on HK . We denote the completion of HK with respect to the
corresponding norm by the same symbol HK .

The example 4o is actually universal because any continuous bounded
vector-valued function a : Rn → H determines the function K(s, t) =
ha(s), a(t)i which is a positive definite continuous and bounded on Rn×Rn.
The corresponding space HK is isometrically isomorphic to the linear span
of the family of vectors {a(q)} in H, and corresponding vectors are identified
with the same functions of C(Rn) as follows. Since

k
nX
i=1

λia(si)k2H =
nX

i,j=1

λiλjha(si), a(sj)i

=
nX

i,j=1

λiλjK(si, sj)

= h
nX
i=1

λiK(·, si),
nX

j=1

λiK(·, sj)i = k
nX
i=1

λiK(·, si)k2HK
,

we identify
Pn

i=1 λia(si) with
Pn

i=1 λiK(·, si).
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3 Representation of data

We present the data as the Radon measure µ on the set Γ.
Let Γ be a compact set in Rn and µ be a finite Radon measure on Γ.

As usual we denote by L2(µ) the Hilbert space of measurable functions on
Γ such that Z

Γ

|f(q)|2dµ(q) <∞.

LetH be a canvas. The canvasH is naturally mapped into L2(µ) through
L∞(µ). We denote this map by Iµ : H → L2(µ). If we identify the elements
of H with the corresponding functions from C(Rn), then Iµ is the operator
of restriction of functions to Γ.

Thus we have
Iµ : H → L∞(µ) ⊂ L2(µ) (1)

The embedding (1) implies that Iµ is a Hilbert—Schmidt operator (see
[3]).

The adjoint operator

I∗µ : L2(µ) = L2(µ)
∗ ⊂ L∞(µ)∗ → H∗ = H

is also a Hilbert—Schmidt operator. Hence the product

Hµ = IµI
∗
µ : L2(µ) ⊂ L∞(µ)∗ → H ⊂ L∞(µ)→ L2(µ)

is a positive trace-class operator in L2(µ).
Denote by Gµ the product

Gµ = I∗µIµ : H → L∞(µ) ⊂ L2(µ) ⊂ L∞(µ)∗ → H,

which is also a trace-class operator. Note that if Iµ is an embedding, then
Ker Gµ = 0 .

Recall that any canvas is generated by a vector-valued function a(q) or
a positive definite kernel K(s, t) = ha(s), a(t)i = a(s)(t). Our aim now is to
present the operators Hµ and Gµ in terms of these functions.

By definition Iµ takes h to hh, a(q)i in L2(µ), hence I∗µ takes each function
f(q) ∈ L2(µ) to the element which generates the functional

α(h) =

Z
Γ

hh, a(q)if(q)dµ.
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Hence

I∗µ(f) =
Z
Γ

f(q)a(q)dµ(q) (weak convergence).

Thereby

Hµ(f)(t) = IµI
∗
µ(f) = h

Z
Γ

f(s)a(s)dµ(s), a(t)i (2)

=

Z
Γ

ha(s), a(t)if(s)dµ(s) =
Z
Γ

K(s, t)f(s)dµ(s).

From the other side

hGµ(h), gi = hI∗µIµ(h), gi = hIµ(h), Iµ(g)iL2(µ)

=
R
Γ

ha(s), hiha(s), gidµ(s)

=
R
Γ

h(a(s)⊗ a(s))h, gidµ(s),

where a ⊗ b denotes the rank one operator in the space H defined by (a ⊗
b)(h) = hh, aib.

In other words

Gµ =

Z
Γ

a(s)⊗ a(s)dµ(s) (weak convergence), (3)

i.e, Gµ is an integral of rank one operators.
Since h(s) = hh, a(s)i and g(s) = hg, a(s)i we also have

hGµ(h), gi =
Z
Γ

h(s)g(s)dµ(s). (4)

It is well known that Hµ = IµI
∗
µ and Gµ = I∗µIµ are similar or metrically

equivalent (non-zero eigenvalues of Hµ and Gµ are equal and have the same
multiplicity).

Both these operators may be used for estimation of the quality of rep-
resentation of the data given by the measure µ on the canvas H. However
if we want to compare two representations on two different canvases H 0

and H 00, we compare the operators H 0
µ and H 00

µ. If we want to compare
representations of two different data µ0 and µ00, we use Gµ0 and Gµ00 .
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4 Geometric harmonics

The eigenvectors of the operator Gµ, corresponding to non-zero eigenval-
ues, were called by R. Coifman by geometric harmonics. Denote by λj the
eigenvalues of the operator Gµ indexed by the standard manner such that
λ1 ≥ · · · ≥ λj ≥ λj+1 ≥ . . . including multiplicity. The corresponding
orthogonal unit eigenvectors will be denoted by ψj . Recall that ψj are func-
tions from C(Rn) since H ⊂ C(Rn). Since Gµ is a trace class operator, we
have

∞X
j=1

λj = tr(Gµ) =

Z
Γ

tr(a(s)⊗ a(s))dµ(s) =

Z
Γ

K(s, s)dµ(s) <∞

because of (3).
The operator Hµ has the same non-zero eigenvalues λj and the corre-

sponding orthogonal unit eigenvectors will be denoted by ϕj ∈ L2(µ).
Consider the Schmidt expansion of Iµ

Iµ =

rank IµX
j=1

λ
1/2
j h·, ψjiϕj , (5)

where ψj is an orthogonal unit sequence in H, and ϕj is orthogonal unit
sequence in L2(µ) (see [2]) .

Hence Iµ(ψj) = λ
1/2
j ϕj , which means that the restriction of ψj on Γ is

multiple of ϕj . Thus ψj/λj may be considered as an extension of ϕj from
Γ to Rn.

Since the Schmidt expansion for the adjoint operator I∗µ has a form

I∗µ =
rank IµX
j=1

λ
1/2
j h·, ϕjiL2(µ)ψj , (6)

we have I∗µ(ϕj) = λ
1/2
j ψj . Hence

ψj =
1

λ
1/2
j

I∗µ(ϕj) =
1

λ
1/2
j

Z
Γ

ϕj(s)a(s)dµ(s),

or

ψj(q) =
1

λ
1/2
j

Z
Γ

ϕj(s)a(s)(q)dµ(s) =
1

λ
1/2
j

Z
Γ

ϕj(s)ha(s), a(q)idµ(s)
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=
1

λ
1/2
j

Z
Γ

ϕj(s)K(s, q)dµ(s),

which gives the formula for the extension of ϕj(s).

5 Reduction of the canvas dimension

In this section we turn to the problem of low dimension representation of
the data. Given a fixed representation on the canvas H we try to find a new
canvas F of the smallest dimension such that distortion between the new
representation and the old one doesn’t exceed fixed number ε > 0. We are
going to measure the distance between two representations as the operator
norm of the difference Hµ − Fµ.

Theorem 1. Let H be an arbitrary canvas and ε > 0. The linear span F of
the first geometric harmonics ψj, corresponding to the eigenvalues λj > ε,
is the canvas of the smallest dimension such that

kHµ − FµkL(L2(µ)) ≤ ε.

Proof. Denote by nε the smallest j such that λnε+1 ≤ ε. Then λ1 ≥ · · ·λnε >
ε and F is the linear span of ψ1, · · · , ψnε . Denote by aF (q) representing
function, corresponding to the canvas F .

We evidently have

aF (q) =
nεX
j=1

haF (q), ψjiψj ,

and since hψj , aF (q)i = ψj(q) we conclude

aF (q)(s) =
nεX
j=1

haF (q), ψjiψj(s) =
nεX
j=1

ψj(q)ψj(s).

Thus the kernel, corresponding to the canvas F , denoted by KF (s, t) is
equal to

nεX
j=1

ψ(t)ψj(s),

and

Fµ(f)(q) =

Z
Γ

nεX
j=1

ψj(q)ψj(s)f(s)dµ(s),
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because of (1).
Since λ1/2j ψj |Γ = ϕj we obtain

Fµ(f)(q) =

Z
Γ

nεX
j=1

λjϕj(q)ϕj(s)f(s)dµ(s).

Therefore

[Hµ − Fµ](f)(q) =

Z
Γ

rank IµX
j=nε+1

λjϕj(q)ϕj(s)f(s)dµ(s),

and we conclude that
kHµ − FµkL(L2(µ)) ≤ ε.

Recall now that eigenvalues of the operator Hµ satisfy to the approxi-
mation property due to G.Allahverdiev (see [2])

λj+1 = min kHµ −Kk, (7)

where minimum is taken over all bounded linear operators K with the rank
less than or equal to j.

Let now eF be a canvas of dimension n such that kHµ − eFµk ≤ ε. The
rank of eFµ is less than or equal to n, therefore (7) yields λn+1 ≤ ε. Hence by
our definition of nε we obtain n ≥ nε. Thus nε is the smallest dimension for
representation of the measure µ with the distortion ε. Theorem is proved.

Thus we see that the problem of finding an optimal finite dimensional
representation is reduced to the problem of finding the geometric harmonics
and the corresponding eigenvalues of the operator Hµ.

If we have opportunity to find the norm of a positive compact operator
and the corresponding extreme point we can find the optimal canvas F such
that kHµ − Fµk ≤ ε for any ε > 0 by the following procedure.

Step 1. Set F = 0.
Step 2. Find

m := max
f∈HªF, kfk=1

hGµf, fi = kfk2L2(µ)

and a maximum point g ∈ H ª F .
Step 3. If m ≤ ε, then STOP. If m > ε, then F := F ⊕ {λg}.
Step 4. GOTO Step 1.
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The final space F is generated by the first harmonics ψ1, · · ·ψnε , since
m consequently gives us λj , and g gives us the corresponding ψj .

If we have an opportunity for any given ε to find a unit vector g such
that kAgk > ε, or to show that

max
f∈H, kfk=1

kAfk ≤ ε,

then we can find the dimension of the optimal canvas with the help of the
following algorithm.

Again we denote by F a finite dimensional subspace in H.
Step 1. Set F = 0.
Step 2. If we find unit vector g ∈ H ª F such that

kgkL2(µ) > ε,

then F := F ⊕ {λg}, if for all f ∈ H ª F , we have kfkL2(µ) ≤ ε, then
STOP.

Step 3. Find
m := min

f∈G, kfk=1
kfkL2(µ)

and a minimal point g.
Step 4. If m > ε GOTO Step 1. If m ≤ ε, then F := F ª {λg}.
Step 5. GOTO Step 1.

Thus for the final space F we have kxk > ε if kxk = 1, x ∈ F , and
kyk ≤ ε for all unit vectors y from the orthogonal complement of F . The
same property has the space generated by the first geometric harmonics.
Therefore neither of these two spaces contains vectors orthogonal to the
other space. Hence these spaces are isomorphic. Thus we find the dimension
of the optimal canvas.
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