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Abstract

In this paper, we consider ∗-algebras LS(M) of locally measurable
operators affiliated to a von Neumann algebra M , and study different
kinds of convergences in this algebras, the convergence almost every-
where and the convergence locally almost everywhere. We also study
a relationship between these two convergences.

Introduction

One of the first approaches to introduce a “noncommutative version” of the
ring of measurable functions was suggested by I. Segal [1], who considered a
∗-algebra S(M) of measurable operators affiliated to a von Neumann algebra
M . Later, for purposes of noncommutative integration, one considered the
∗-subalgebras of S(M), S(M, τ), of all τ -measurable operators associated
with a faithful normal semi-finite trace τ onM , see, e.g., [2—4]. The algebras
S(M, τ) and S(M) are ∗-algebras of closed densely defined linear operators
that act on a Hilbert space H the same for the von Neumann algebra M
itself. In such a case, all these operators are affiliated toM and the algebraic
operations for these ∗-algebras coincide with the operation of the “strong
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sum”, the “strong product”, passing to the adjoint, and the usual multipli-
cation by scalars. The von Neumann algebraM is a ∗-subalgebra of S(M, τ)
and S(M), and coincides with the set of all bounded operators in S(M, τ)
and S(M). A more general class of ∗-algebras of closed operators that act
on a Hilbert space H and that are affiliated to a von Neumann algebra M
was introduced by Dixon in [5] who called them EW ∗-algebras. In addition
to the mentioned above ∗-algebras S(M) and S(M, τ), ∗-algebras LS(M)
of locally measurable operators affiliated to M are also EW ∗-algebras [6, 7].
B.S. Zakirov and V.I. Chilin have shown in [8] that any EW ∗-algebra A
such that ATB(H) = M , where B(H) is the algebra of all bounded linear
operators acting on H, is a ∗-subalgebra of LS(M). This explains unique-
ness of the ∗-algebra LS(M) for a von Neumann algebra M in the class of
EW ∗-algebras.

In this paper, we consider ∗-algebras LS(M), study different types of con-
vergence in these algebras, i.e., convergences almost everywhere and locally
almost everywhere, and study a relationship between these two convergences.

We employ the terminology and notations used in the theory of von
Neumann algebras [9, 10] and the theory of measurable operators [1, 3, 4, 7].

1 Preliminaries

Let H be a Hilbert space, B(H) the algebra of all bounded operators acting
on H, M a von Neumann algebra in B(H), P (M) the complete lattice of all
orthogonal projections in M .

A linear space D in H is called affiliated to M , denoted by DηM , if
U(D) ⊂ D for any unitary operator U from the commutant

M 0 = {S ∈ B(H) : ST = TS ∀ T ∈M}

of the von Neumann algebra M . If D is a closed subspace of H and PD is
an operator of the orthogonal projection onto D, then DηM if and only if
PD ∈ P (M).

A linear operator T that acts on a Hilbert space H and has domain
D(T ) is called affiliated to M , denoted by T ηM , if U(D(T )) ⊂ D(T ) for
any unitary operator U in the commutant M 0 and UTξ = TUξ for all
ξ ∈ D(T ). It is clear that if T ∈ B(H) and T ηM , then T ∈M .

A closed linear operator T with domain D(T ) ⊂ H is called measurable
with respect to a von Neumann algebra M [1], if T ηM and there exists a
sequence of projections, {Pn}∞n=1 ⊂ P (M), such that Pn ↑ I, Pn(H) ⊂ D(T ),
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and P⊥n = I − Pn is a finite projection in M for all n = 1, 2, . . ., where I is
the identity in the von Neumann algebra M .

Denote by S(M) the set of all linear operators on H, measurable with
respect to the von Neumann algebra M . If T ∈ S(M), λ ∈ C, where C is
the field of complex numbers, then λT ∈ S(M) and the operator T ∗, adjoint
to T , is also measurable with respect to M [1]. Moreover, if T, S ∈ S(M),
then the operators T +S and TS are defined on dense subspaces and admit
closures that are called, correspondingly, the strong sum and the strong
product of the operators T and S, and are denoted by T +̇S and T ∗ S. It
was shown in [1] that T +̇S and T ∗ S belong to S(M) and these algebraic
operations make S(M) a ∗-algebra with the identity I over the field C.
Here, M is a ∗-subalgebra of S(M). In what follows, the strong sum and
the strong product of operators T and S will be denoted in the same way
as the usual operations, by T + S and TS.

If T is a closed linear operator with the domain dense inH and T = U |T |
is the polar decomposition of the operator T , where |T | = (T ∗T )

1
2 is the

absolute value of T and U is the corresponding partial isometry, then T ∈
S(M) if and only if U ∈ M and |T | ∈ S(M) [7]. The following proposition
gives a convenient criterion for a closed operator T to be measurable in
terms of the spectral family for |T |.
Proposition 1 ([7]). Let T be a closed operator on H, T ηM , T = U |T |
the polar decomposition of T , {Eλ} the spectral family of projections for |T |,
λ ∈ R, where R is the field of real numbers. Then U ∈M and Eλ ∈ P (M)
for all λ ∈ R. Also, T ∈ S(M) if and only if the domain D(T ) of the
operator T is dense in H and E⊥λ is a finite projection for some λ > 0.

To prove Proposition 1.1, one uses the following lemma in an essential
way. This lemma will be used later.

Lemma 1 ([7]). Let T be a closed operator on H with dense domain D(T ),
T ηM , and {Eλ} be the spectral family of projections for |T |, λ ∈ R. If
P ∈ P (M), P (H) ⊆ D(T ), TP ∈ B(H), and kTPkB(H) < λ, then E⊥λ - P⊥

(recall that the relation E - Q for projections E,Q ∈ P (M) means that
E ∼ E1 6 Q, and the equivalence of projections, E ∼ E1, is equivalent to
existence of a partial isometry V ∈ M such that V ∗V = E1 and V V ∗ =
E).

It directly follows from Proposition 1.1 that, in the case where M is a
type III von Neumann algebra or M is a type I factor, we always have
S(M) =M . For von Neumann algebras of type II, the latter identity is not
true already. The proof of this fact is based on the following proposition.
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Proposition 2 ([11]). If there exists an increasing sequence of projections
{En} in M such that E = supn>1En is a finite projection, and En 6= E for
all n = 1, 2, . . ., then S(M) 6=M .

Corollary 1. If M is a von Neumann algebra of type II, then S(M) 6=
M .

The following proposition gives conditions that are necessary and suffi-
cient for ∗-algebras S(M) and M to coincide.

Proposition 3 ([11]). The following statements are equivalent.

(i) S(M) =M .

(ii) M can be represented as a direct sum, M =
mP
n=0

Mn, where M0 is

a von Neumann algebra of type III, and Mn are factors of type I,
n = 1, 2, . . . , m, and m is a natural number (some terms could be
omitted).

A closed linear operator T acting on a Hilbert space H is called locally
measurable with respect to a von Neumann algebra M if T ηM and there
exists a sequence {Zn}∞n=1 of central projections in M such that Zn ↑ I and
TZn ∈ S(M) for all n = 1, 2, . . . [7].

Denote by LS(M) the set of all linear operators that are locally mea-
surable with respect to M . It was proved in [7] that LS(M) is a ∗-algebra
over the field C with identity I, the operations of strong addition, strong
multiplication, and passing to the adjoint (the multiplication by a scalar is
defined as usual with the assumption 0 ∗ T = 0.) In such a case, S(M) is
a ∗-subalgebra in LS(M). In the case where M is a finite von Neumann
algebra or a factor, the algebras S(M) and LS(M) coincide. This is not true
in the general case. The following proposition gives a sufficient condition
for these algebras to be distinct.

Proposition 4 ([11]). If a von Neumann algebra M contains a sequence
{Zn}∞n=1 of central projections, increasing to the identity, such that (I−Zn)
is not a finite projection, n = 1, 2, . . ., then LS(M) 6= S(M).

Proposition 1.4 gives at once the following.

Corollary 2. If a von Neumann algebra M is a direct product of an infinite
number of von Neumann algebras that are not finite, then LS(M) 6= S(M).
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The following proposition gives a criterion for the ∗-algebras LS(M) and
S(M) to coincide.

Proposition 5 ([11]). The following statements are equivalent.

(i) LS(M) = S(M).

(ii) M can be represented as a direct sum, M =
mP
n=0

Mn, where M0 is a

finite von Neumann algebra and Mn are factors of type I∞, II∞, III,
n = 1, 2, . . . , m, and m is a natural number (some terms could be
omitted).

We recall one more important property of the ∗-algebras LS(M).
Proposition 6 ([12]). Let a von Neumann algebra M be a C∗-product of
von Neumann algebras Mi, i ∈ I, where I is a family of indices, that is,
M = {{Ti}i∈I, Ti ∈ Mi, i ∈ I, supi∈I kTikMi < ∞} with the coordinate-
wise algebraic operations and involution and the CB-norm, k{Ti}i∈IkM =
supi∈I kTikMi. Then the ∗-algebra LS(M) is ∗-isomorphic to the ∗-algebraQ
i∈I

LS(Mi) (the algebraic operations and the involution in
Q
i∈I

LS(Mi) are

coordinate-wise.)

Let us remark that there is no an analogue of Proposition 1.6 for the
algebras S(M). Indeed, let Mn be type III factors, n = 1, 2, . . ., and M
be their C∗-product. Then S(M) =M and LS(Mn) = S(Mn) =Mn for all
n = 1, 2, . . .. Moreover, by Corollary 1.2, LS(M) 6= S(M) =M . Hence, in
virtue of Proposition 1.6,

∞Y
n=1

S(Mn) =
∞Y
n=1

LS(Mn) = LS(M) 6= S(M).

The following proposition gives necessary and sufficient conditions for
the ∗-algebras LS(M) and M to coincide.

Proposition 7 ([11]). The following statements are equivalent.

(i) LS(M) =M .

(ii) M can be represented as a direct sum, M =
mP
n=1

Mn, where Mn are

type I or type III-factors, n = 1, 2, . . . , m, and m is an integer (some
terms could be absent).
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2 Convergences almost everywhere and locally al-
most everywhere in the ∗-algebra LS(M).

Let M be an arbitrary von Neumann algebra, Pf (M) a sublattice in P (M)
of all finite projections in M .

Definition 1 ([1]). A sequence {Tn}∞n=1 ⊂ LS(M) converges almost every-
where to T ∈ LS(M), denoted by Tn

a.e.−→ T , if for any ε > 0 there exists
a subsequence {En}∞n=1 ⊂ P (M) such that En ↑ I, E⊥n ∈ Pf (M), (Tn −
T )En ∈M and k(Tn − T )EnkM < ε for all n = 1, 2, . . ..

Let M be a commutative von Neumann algebra. Then, as known [13,
Part 1, Chapter 7], there exists a measurable space (Ω, Σ, µ) with a finite
locally complete measure µ such that M is ∗-isomorphic to the ∗-algebra
L∞(Ω, Σ, µ). In this case, the algebra LS(M) = S(M) is ∗-isomorphic to
the ∗-algebra S(Ω, Σ, µ) of all measurable complex-valued functions defined
on (Ω, Σ, µ) (the functions that are equal almost everywhere are considered
as identical) [1]. The introduced convergence almost everywhere coincides
with the convergence almost everywhere with respect to the measure µ in
the sense of the measure theory.

It is clear that if Tn, T ∈ M and kTn − TkM −→ 0, then Tn
a.e.−→ T .

The following proposition gives a sufficient condition so that the converse
statement holds.

Proposition 8. Let a von Neumann algebra M be given as a direct sum,

M =
mP
i=0

Mi, where M0 is a von Neumann algebra of type III, Mi are type

I factors, i = 1, ...,m, and m is a natural (some terms could be absent). If
Tn, T ∈ LS(M) and Tn

a.e.−→ T , then (Tn−T ) ∈M starting with some index,
and kTn − TkM −→ 0 for n→∞.
Proof. Any finite projection E in P (M) has the form E =

Pk
j=1 Pj , where

Pj are atoms in P (M), j = 1, 2, . . . , k, that is, the reduced von Neumann
algebras PjMPj are one-dimensional. So, if Qn ∈ Pf (M) and Qn ↓ 0, then
Qn = 0 starting with some index n0. This, together with the definition of
convergence almost everywhere, imply that (Tn − T ) ∈ M for n ≥ n0 and
kTn − TkM −→ 0 as n→∞.

Consider an arbitrary von Neumann algebra of type III, M , such that
its center Z(M) does not have atoms. Then the ∗-algebra LS(Z(M)) =
S(Z(M)) is ∗-isomorphic to the ∗-algebra S(Ω, Σ, µ) for a corresponding
measurable space with a locally finite continuous measure µ. If Tn, T ∈
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LS(Z(M)) ⊂ LS(M), Tn
a.e.−→ T in LS(M), then by Proposition 2.1, (Tn −

T ) ∈ Z(M) starting with some index, and kTn−TkZ(M) = kTn−TkM −→ 0
as n→∞.

Since the measure µ is continuous, there exist Tn, T ∈ S(Z(M)) such
that Tn → T almost everywhere with respect to µ, but (Tn − T ) does not
belong to M for all n = 1, 2, . . .. This means that convergence of Tn almost
everywhere to T in LS(Z(M)) does not imply in general the convergence
almost everywhere in LS(M).

In this connection, it is natural to modify the notion of convergence
almost everywhere in LS(M) so that this convergence would induce the
convergence almost everywhere in LS(Z(M)).

Definition 2 ([7]). We will call a sequence {Tn}∞n=1 in LS(M) convergent

locally almost everywhere to T ∈ LS(M)), denoted by Tn
l.a.e.−→ T , if for any

ε > 0 there exist sequences {En}∞n=1 ⊂ P (M) and {Zn}∞n=1 ⊂ P (Z(M))
such that En ↑ I, Zn ↑ I, ZnE

⊥
n ∈ Pf (M), (Tn − T )En ∈ M and k(Tn −

T )EnkM < ε for all n = 1, 2, . . ..

It is clear that the convergence Tn
a.e.−→ T implies the convergence Tn

l.a.e.−→
T (it is sufficient to take Zn = I, n = 1, 2, . . .). Moreover, it is clear
that if M is a factor or a finite von Neumann algebra, convergences almost
everywhere and locally almost everywhere coincide. The following theorem
gives a relation between convergences almost everywhere and locally almost
everywhere for an arbitrary von Neumann algebra M .

Theorem 1. Let M be an arbitrary von Neumann algebra, {Tn}∞n=1, T in
LS(M). The following conditions are equivalent:

(i) Tn
l.a.e.−→ T .

(ii) There exists a sequence of pairwise orthogonal central projections
{Pm}∞m=1 such that

P∞
m=1 Pm = I and TnPm

a.e.−→ TPm, as n → ∞,
for each fixed m = 1, 2, . . ..

Proof. (i) =⇒ (ii). Let Tn
l.a.e.−→ T , ε > 0 and the projections {En}∞n=1 ⊂

P (M), and {Zn}∞n=1 ⊂ P (Z(M)) be such that En ↑ I, Zn ↑ I, ZnE
⊥
n ∈

Pf (M), (Tn − T )En ∈M and k(Tn − T )EnkM < ε for all n = 1, 2, . . ..
Let P1 = Z1, Pm = Zm − Zm−1 for m ≥ 2.
It is clear that {Pm}∞m=1 ⊂ P (Z(M)),

P∞
m=1 Pm = supm>1 Zm = I.

Fix m and set Qnm = EnPm + P⊥m for n > m and Qnm = 0 if n < m.
Then Qnm ↑ I for n→∞ and

Q⊥nm = I − (EnPm + P⊥m) = Pm −EnPm = E⊥n Pm = (E
⊥
n Zn)Pm ∈ Pf (M)
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for n > m. Moreover,

(TnPm − TPm)Qnm = (Tn − T )PmQnm = (Tn − T )EnPm ∈M

and k(TnPm−TPm)Qnmk < ε. This means that TnPm
a.e.−→ TPm, as n→∞,

for each fixed m = 1, 2, . . ..
(ii) =⇒ (i). Let {Pm}∞m=1 ⊂ P (Z(M)), PmPn = 0 for m 6= n,P∞

m=1 Pm = I and TnPm
a.e.−→ TPm as n → ∞ for each fixed m = 1, 2, . . ..

Then, for each ε > 0 there is a sequence {Enm}∞n=1 ⊂ P (M) such
that Enm ↑ I for n → ∞, E⊥nm ∈ Pf (M), (Tn − T )PmEnm ∈ M and
k(Tn − T )PmEnmkM < ε for all n,m = 1, 2, . . ..

Set Zn =
Pn

m=1 Pm and Qn =
Pn

m=1EnmPm.
Then {Zn}∞n=1 ⊂ P (Z(M)), {Qn}∞n=1 ⊂ P (M), Zn ↑ I, Qn ↑ I,

Q⊥nZn =
Pn

m=1E
⊥
nmPm ∈ Pf (M), (Tn−T )Qn =

Pn
m=1(Tn−T )EnmPm ∈M

and, since the central supports of operators (Tn − T )EnmPm are pairwise
orthogonal for fixed n, we have

k(Tn − T )QnkM = max
16m6n

k(Tn − T )EnmPmkM < ε.

Consequently, Tn
l.a.e.−→ T .

Let us find a class of von Neumann algebras for which the convergences
almost everywhere and locally almost everywhere coincide.

Theorem 2. The following conditions are equivalent.

(i) Every sequence in LS(M), which is convergent locally almost every-
where, is convergent in LS(M) almost everywhere.

(ii) The von Neumann algebra M can be represented as a direct sum, M =Pm
i=0Mi, where M0 is a finite von Neumann algebra, and Mi are

factors of type I∞, II∞, or III, i = 1, 2, . . . ,m, and m is a natural
number (some terms could be missed).

Proof. (i) =⇒ (ii). Assume that M is not a finite von Neumann algebra
and choose a central projection Q ∈ Z(M) such that M0 = Q⊥M is a finite
von Neumann algebra and QM is a properly infinite von Neumann algebra
(it can happen that Q = I). Let us show that the center Z(QM) = QZ(M)
is a finite dimensional von Neumann algebra.

If this is not the case, then there exists a subsequence {Zn}∞n=1 ⊂
P (QZ(M)) such that Zn ↑ Q and Zn 6= Q for all n = 1, 2, . . .. Then

it is clear that Zn
l.a.e.−→ Q in LS(M) and by (i) we have that Zn

a.e.−→ Q
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in LS(M). Hence, there exists a sequence {En}∞n=1 ⊂ P (M) such that
En ↑ I, E⊥n ∈ Pf (M), (Zn − Q)En ∈ M and k(Zn − Q)EnkM < ε = 1

2 for
all n = 1, 2, . . ..

Since Q−Zn = Z⊥n Q, we see that (Q−Zn)En = Z⊥n QEn is a projection
such that kZ⊥n QEnk < 1

2 . Consequently, Z
⊥
n QEn = 0 and, hence, Z⊥n Q 6

E⊥n . This means that Q− Zn = Z⊥n Q is a nonzero finite projection in QM ,
which contradicts that the von Neumann algebra QM is properly infinite.

Consequently, the algebra QZ(M) is finite dimensional, that is there
exist atoms Q1, Q2, . . . , Qm in P (QZ(M)) such that

Pm
i=1Qi = I and

Mi = QiM are not finite factors, i.e., they are factors of types I∞, II∞, or
III. Hence, M is a direct sum,

Pm
i=0Mi, where M0 = Q⊥M is a finite von

Neumann algebra, and Mi = QiM are factors of the above types.
(ii)⇒ (i). Assume that the von Neumann algebraM can be represented

as the direct sum M =
Pm

i=0Mi, where M0, Mi, i = 1, 2, . . ., are the same
as in (ii). By Proposition 1.6,

LS(M) = LS(M0)
M mX

i=1

LS(Mi).

Denote by Qi the identity element in the von Neumann algebra Mi, i =

0, 1, 2, . . . ,m. Let Tn, T ∈ LS(M) and Tn
l.a.e.−→ T in LS(M) as n → ∞.

Then TnQi
l.a.e.−→ TQi in LS(Mi) as n→∞ for any fixed i = 0, 1, 2, . . . ,m.

Since M0 is a finite von Neumann algebra and Mi are factors, we have
that TnQi

a.e.−→ TQi in LS(Mi) as n → ∞. Since Qi ∈ P (Z(M)), we see
that TnQi

a.e.−→ TQi in LS(M) as n → ∞. By Theorem 2.1, Tn
a.e.−→ T in

LS(M).

Remark 1. Let a von Neumann algebra M be represented as a C∗-product,
M =

Q∞
i=1Mi, where Mi are factors of types I∞, II∞, or III, i = 1, 2, . . ..

Then, by Theorem 2.2, the convergences locally almost everywhere and al-
most everywhere do not coincide in LS(M). In particular, there are von
Neumann algebras of countable type for which these convergences do not
coincide (recall that a von Neumann algebra M is of a countable type if
any family of nonzero pairwise orthogonal projections in P (M) is at most
countable).

Remark 2. Let M be a factor of type I or III (in this case LS(M) =M),

{Tn}∞n=1, T in M and Tn
l.a.e.−→ T . Then, for each ε > 0 there exists a

sequence {En}∞n=1 ⊂ P (M) such that En ↑ I, E⊥n ∈ Pf (M) (that is, E⊥n = 0
starting with some index n0), (Tn − T )En ∈ M and k(Tn − T )EnkM < ε
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(i.e., kTn − Tk < ε as n > n0). This means that convergence locally almost
everywhere coincides with the uniform convergence.

Proposition 9. Let Tn, T ∈ S(Z(M)). The following conditions are equiv-
alent.

(i) Tn
l.a.e.−→ T in LS(M).

(ii) Tn −→ T almost everywhere in S(Ω, Σ, µ) (the ∗-algebra S(Z(M)) is
identified with the ∗-algebra S(Ω, Σ, µ) and the center Z(M) with the
∗-algebra L∞(Ω, Σ, µ)).

Proof. (i) ⇒ (ii). Without loss of generality, we can assume that T = 0.

Since Tn
l.a.e.−→ 0 in LS(M), by Theorem 2.1 there exists a sequence {Pm}∞m=1

of pairwise orthogonal projections such that
P∞

m=1 Pm = I and TnPm
l.a.e.−→ 0

in LS(M) as n→∞ for each fixed m = 1, 2, . . ..
Let us fixm and show that TnPm −→ 0 almost everywhere in S(Ω, Σ, µ)

as n→∞.
Choose an arbitrary ε > 0 and choose a sequence {En}∞n=1 ⊂ P (M) such

that En ↑ I, E⊥n ∈ Pf (M), and kTnPmEnkM < ε for all n = 1, 2, . . ..
Denote by {Eλ(|TnPm|)} the spectral family of projections for the op-

erator |TnPm|. By Lemma 1.1, we have that E⊥ε (|TnPm|) - E⊥n . Since
Eε(|TnPm|) is a central projection, E⊥ε (|TnPm|) ≤ E⊥n and, hence, En ≤
Eε(|TnPm|) for all n = 1, 2, . . ..

Because En ↑ I, we have that supn≥1{infk≥nEε(|TkPm|)} = I for each
ε > 0, that is,

∞[
n=1

(
∞\
k=n

{ω ∈ Ω : |Tk(ω)Pm(ω)| < ε}) = Ω

µ-almost everywhere. This means that TnPm −→ 0 almost everywhere in
S(Ω, Σ, µ) as n → ∞ for each fixed m = 1, 2, . . .. Since

P∞
m=1 Pm = I, we

see that Tn −→ 0 almost everywhere in S(Ω, Σ, µ).
(ii) ⇒ (i). Let Tn −→ 0 almost everywhere in S(Ω, Σ, µ). Then, for

every ε > 0, the following holds:

∞[
n=1

(
∞\
k=n

{ω ∈ Ω : |Tk(ω)| < ε}) = Ω

µ-almost everywhere.
Denote by Zn the central projection in Z(M) corresponding to the set

(
T∞
k=n{ω ∈ Ω : |Tk(ω)| < ε}) ∈ Σ. It is clear that Zn ↑ I and, for En = Zn,
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we have that ZnE
⊥
n = 0 ∈ Pf (M), kTnEnkM = kTnZnkZ(M) < ε for all

n = 1, 2, . . .. This means that Tn
l.a.e.−→ 0 in LS(M).

Let M be an arbitrary commutative von Neumann algebra. Then as
was noted above, there exists a measurable space (Ω, Σ, µ) with a locally
finite complete measure µ such that M is ∗-isomorphic to the ∗-algebra
L∞(Ω, Σ, µ) and the ∗-algebra LS(M) = S(M) is ∗-isomorphic to the
∗-algebra S(Ω, Σ, µ). So, together with a well-known convergence in
S(Ω, Σ, µ) with respect to measure, we also consider the convergence lo-
cally with respect to measure. This convergence is defined as follows: a
sequence {fn}∞n=1 ⊂ S(Ω, Σ, µ) converges locally with respect to measure to
f ∈ S(Ω, Σ, µ) as n→∞ if fnχA −→ fχA with respect to measure for any
set A ∈ Σ with µ(A) < ∞, where χA is a characteristic function of the set
A.

A similar convergence can be also defined in the algebra LS(M) in the
case of an arbitrary von Neumann algebra M .

Denote by ϕ a ∗-isomorphism of the center Z(M) of the von Neumann
algebra M to the ∗-algebra L∞(Ω, Σ, µ) and by S+∞(Ω, Σ, µ) the set of all
measurable functions f : Ω −→ [0, ∞] (functions that are equal almost
everywhere are identified). It was shown in [1] that there exists a mapping

d : P (M) −→ S+∞(Ω, Σ, µ)

such that

(i) d(P ) = 0 if and only if P = 0;

(ii) d(P ) is finite almost everywhere if and only if the projection P is finite;

(iii) d(P +Q) = d(P ) + d(Q) if PQ = 0;

(iv) d(U∗U) = d(UU∗) for any partial isometry U ∈M ;

(v) d(ZP ) = ϕ(Z)d(P ) for all Z ∈ P (Z(M)) and P ∈ P (M);

(vi) if Pα, P ∈ P (M) and Pα ↑ P , then d(P ) = supα d(Pα).

A mapping d : P (M) −→ S+∞(Ω, Σ, µ) satisfying the properties (i)–(vi)
is called a dimension function on P (M).

For each ε > 0 and A ∈ Σ satisfying µ(A) <∞, we set

V (A, ε) = {T ∈ LS(M) : there exists P ∈ P (M) such that TP ∈M,

kTPkM < ε, and µ(A ∩ {ω ∈ Ω : d(P⊥)(ω) > ε}) < ε}.
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Theorem 3 ([7]). (i) The system of the sets

{{T + V (A, ε)} : T ∈ LS(M), ε > 0, A ∈ Σ, µ(A) <∞} (1)

defines in LS(M) a Hausdorff vector topology t for which sets (14.1)
form a base of neighborhoods of the operator T ∈ LS(M).

(ii) (LS(M), t) is a complete uniform space with respect to the dimension
induced by the topology t.

(iii) The involution is continuous, and the multiplication in (LS(M), t)
is continuous in the totality of the variables (that is (LS(M), t) is a
topological ∗-algebra).

(iv) The topology t is metrizable if and only if the Boolean algebra P (Z(M))
is of countable type, that is, any family of nonzero pairwise orthogonal
projections in P (Z(M)) is at most countable.

(v) If {Tα}α∈J , T ⊂ LS(M), then the net Tα converges to T in the topology

t (denoted by Tα
t−→ T ) if and only if E⊥λ (|Tα − T |) t−→ 0 for any

λ > 0, where {Eλ(|Tα − T |)} is a spectral family of projections for
|Tα − T |. In particular, Tα t−→ T if and only if |Tα − T | t−→ 0.

(vi) If {Pn}∞n=1 ⊂ P (M), then Pn
t−→ 0 if and only if χAd(Pn) −→ 0 with

respect to the measure µ for each A ∈ Σ with µ(A) <∞.

It was found in [7] that the topology t does not change if the measure µ
is replaced with an equivalent measure and the dimension function d with
another dimension function.

Convergence in the topology t is called a convergence locally in measure.
It follows from the definition of the topology t that the convergence

of a net {Tα}α∈J to T locally in measure means that for any ε > 0 and
A ∈ Σ, µ(A) < ∞, there exists α0 = α(ε, A) such that, for each α ≥ α0,
there exists a projection P (α) ∈ P (M) satisfying

k(Tα − T )P (α)kM < ε (2)

and
µ(A ∩ {ω ∈ Ω : d(I − P (α))(ω) > ε}) < ε. (3)

If inequality (14.2) is replaced with the inequality

kP (α)(Tα − T )P (α)kM < ε, (14.20)
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then it is said that the net {Tα}α∈J converges to T two-side locally in mea-
sure.

It is easy to see that the two-side convergence in measure is equiva-
lent to the convergence in the vector topology in LS(M), with the base of
neighborhoods of zero formed by the sets

W (A, ε) = {T ∈ LS(M) : there exists P ∈ P (M)

such that PTP ∈M, kPTPkM < ε

and µ(A ∩ {ω ∈ Ω : d(P⊥)(ω) > ε}) < ε},
where ε > 0, A ∈ Σ, µ(A) <∞.

In fact, this vector topology coincides with the topology t, which is di-
rectly implied by the following proposition.

Proposition 10 ([11]).

V (A, ε) ⊂W (A, ε) ⊂ V (A, 2ε)

for any ε > 0, A ∈ Σ, µ(A) <∞.
If there exists a faithful normal semi-final trace τ on a von Neumann

algebra M , then, for the ∗-algebra LS(M), one can consider convergence in
measure induced by the trace τ , see, e.g. [2, 3]. This convergence coincides
with the convergence in the vector topology tτ in LS(M), with a base of
neighborhoods of zero formed by the sets

V (ε, δ) = {T ∈ LS(M) : there exists P ∈ P (M)

such that TP ∈M, kTPkM < ε, τ(P⊥) < δ},

where ε, δ > 0.

Proposition 11 ([11]). Let τ be a faithful normal semi-finite trace on a
von Neumann algebra M . Then we have the following.

(i) If {En}∞n=1 ⊂ P (M) and τ(En) −→ 0, then En
t−→ 0. Conversely, if

En
t−→ 0 and τ(I) <∞, then τ(En) −→ 0.

(ii) If {Tn}∞n=1, T ⊂ LS(M) and Tn
tτ−→ T , then Tn

t−→ T .

(iii) If τ(I) <∞, then the topologies t and tτ coincide.
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Remark 3. If the trace τ is not finite, then the convergence Tn
t−→ T , in

general, does not imply the convergence Tn
tτ−→ T even for commutative von

Neumann algebras.

Example 1. Consider the von Neumann algebra

M = l∞ = {{cn}∞n=1 : cn ∈ C, n = 1, 2, . . . , sup
n≥1

|cn| <∞}.

Set τ({cn}) =
P∞

n=1 cn and τ1({cn}) =
P∞

n=1 2
−ncn, where {cn} ∈

l∞, cn ≥ 0.
Then τ is a faithful normal trace on M that is semi-finite but not finite,

and τ1 is a faithful normal finite trace on M .
Consider a sequence of projections, En = (0, 0, . . . , 0| {z }

n

, 1, 1, . . .), in l∞,

decreasing to zero. Then τ1(En) =
P∞

k=n+1 2
−k = 2−n → 0 as n→∞ and,

by Proposition 2.4(i), En
t−→ 0.

However, τ({En > 1
2}) = +∞ for all n = 1, 2, . . ., and so En

tτ9 0.

Remark 4. Let M be a factor. Then Z(M) = C = L∞({ω}, Σ, µ), where
Σ = {∅, {ω}}, µ({ω}) = 1. In this case, the dimension function d is a
faithful normal semi-finite (finite) trace on M if M is of type I∞, II∞
(correspondingly, In, II1), and d(E) = +∞ for all nonzero E ∈ P (M) if M
is of type III.

So, if ε ∈ (0, 1), A = {ω}, we have that

V (A, ε) = {T ∈ LS(M) : there exists P ∈ P (M) such that TP ∈M,

kTPkM < ε, and d(P⊥) < ε}.
In other words, if M is of type III, then

V (A, ε) = {T ∈M : kTkM < ε},
that is the convergence locally in measure coincides with uniform conver-
gence, and if M is of type I or II, then convergence locally in measure
coincides with convergence in measure induced by the trace d.

Remark 5. If M = B(H) is a factor of type I, then convergence locally in
measure coincides with uniform convergence.

Indeed, let τ = tr be the canonical trace on B(H), Tn, T ∈ B(H), and
Tn

t−→ T (note that, by Proposition 1.7, LS(M) = S(M) =M = B(H)).
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By Theorem 2.3 (v), (vi), we have that tr(E⊥λ (|Tn−T |)) −→ 0 as n→∞
for any λ > 0. Consequently, E⊥λ (|Tn − T |) = 0 starting with some index
n(λ). This means that kTn − TkM = k|Tn − T |kM ≤ λ for n ≥ n(λ), that
is, kTn − TkM −→ 0 as n→∞.

Remark 6. If Tn, T ∈ S(Z(M)), then Tn
t−→ T if and only if Tn −→ T in

the measure µ for each A ∈ Σ with µ(A) < ∞ (we identify S(Z(M)) with
the ∗-algebra S(Ω, Σ µ)).

Indeed, if {Eλ(|Tn − T |)} is a spectral family of projections for the
operator |Tn − T |, then by Theorem 2.3 (v), Tn

t−→ T if and only if

E⊥λ (|Tn − T |) t−→ 0 for any λ > 0. Since Tn, T ∈ S(Z(M)), we have
that Eλ(|Tn−T |) ∈ P (Z(M)) for all λ > 0. By Theorem 2.3 (vi), E⊥λ (|Tn−
T |) t−→ 0 if and only if χAE

⊥
λ (|Tn − T |)d(I) = χAd(E

⊥
λ (|Tn − T |)) −→ 0 in

the measure µ for each A ∈ Σ with µ(A) <∞, where we identify Z(M) with
the ∗-algebra L∞(Ω, Σ, µ) (see the definition of the dimension function d).

Consequently, Tn
t−→ T if and only if E⊥λ (|Tn − T |) converges to zero

in the measure µ for each A ∈ Σ with µ(A) < ∞ for all λ > 0. The latter
condition, clearly, is equivalent to the convergence Tn −→ T in the measure
µ for each A ∈ Σ with µ(A) <∞.

The following theorem gives a criterion for the convergences locally al-
most everywhere and locally in measure to coincide in LS(M).

Theorem 4. The following conditions are equivalent.

(i) For {Tn}∞n=1 and T in LS(M), Tn
l.a.e.−→ T if and only if Tn

t−→ T .

(ii) The von Neumann algebraM can be represented as a C∗-product,M =Q
i∈J Mi, where Mi are factors of types I or III, i ∈ J, and J is an

index set.

Proof. (i) =⇒ (ii). Identify the center Z(M) of the von Neumann alge-
bra M with the ∗-algebra L∞(Ω, Σ, µ), and the ∗-algebra LS(M) with the
∗-algebra S(Ω, Σ, µ). If the space with the measure (Ω, Σ, µ) is not atomic,
then there exists a set A ∈ Σ with 0 6= µ(A) <∞ such that the Boolean al-
gebra Q(A)Z(M) does not have atoms, where Q(A) is the central projection
in Z(M) corresponding to the set A. In this case, as shown in [14], there
exists a sequence {Gn} ⊂ P (Q(A)Z(M)) such that µ(Gn) −→ 0, but {Gn}
does not converge to zero µ-almost everywhere. It follows from Remark 6

that Gn
t−→ 0. So, by assumption (i), we have Gn

l.a.e.−→ 0. But then, by
Proposition 2.2, Gn −→ 0 almost everywhere in S(Ω, Σ, µ), which is not
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true. Consequently, the Boolean algebra P (Z(M)) of central projections in
M is atomic.

Let {Qi}i∈J be the set of all atoms in P (Z(M)) and Mi = QiM , i ∈ J .
Then Mi is a factor for each i ∈ J and the von Neumann algebra M is ∗-
isomorphic to the C∗-product

Q
i∈J Mi (this ∗-isomorphism is given by the

mapping ψ :M 7−→Q
i∈J Mi, where ψ(T ) = {QiT}i∈J , T ∈M).

Let τ i be a faithful normal trace on Mi (if Mi is of type III, then
τ i(0) = 0 and τ i(T ) = +∞ for any positive operator T ∈Mi).

The mapping d : M 7−→ S+∞(Ω, Σ, µ) defined by the formula d(E) =
{τ i(EQi)}i∈J is a dimension function on M (since the Boolean algebra
P (Z(M)) is atomic, Ω can be identified with J and Σ with the σ-algebra of
all subsets of J , with µ(i) <∞ for all i ∈ J).

Suppose that there exists i0 ∈ J such thatMi0 has type II1 or II∞. Then
Mi contains a commutative von Neumann subalgebra B such that (B, τ i0)
is ∗-isomorphic to (L∞([0, 1]),m), where m is a linear Lebesgue measure on
the line segment [0, 1]. Using the proof of Theorem 8 in [14] we see that there
exists a sequence {En}∞n=1 ⊂ P (Mi0) such that τ i0(En) −→ 0, but {En}∞n=1
does not converge to zero in S(Mi0) almost everywhere. It follows from

Theorem 2.3 (vi) that Ên
t−→ 0, where Ên = {T (n)i }i∈J ∈ P (M), T (n)i = 0

for i 6= i0 and T
(n)
i0

= En. Consequently, by assumption (i), Ên
l.a.e.−→ 0, and

so, QiÊn
l.a.e.−→ 0, which implies that En

l.a.e.−→ 0 in LS(Mi0) = S(Mi0). Since
Mi0 is a factor, En −→ 0 in S(Mi0) almost everywhere, which is not true.
This contradiction shows that each factor Mi has type I or III, i ∈ J .

(ii) ⇒ (i). Let a von Neumann algebra M be represented as a C∗-
product, M =

Q
i∈J Mi, where Mi are factors of types I or III. To prove

the implication (ii) ⇒ (i), it is sufficient to show that if {T (n)i }i∈J = Tn ∈
LS(M) =

Q
i∈J LS(Mi) and Tn

t−→ 0, then Tn
l.a.e.−→ 0.

Set Qj = {Ei}i∈J ∈ P (Z(M)), where Ei = 0 for i 6= j and Ej = IMj is

the identity element in the algebra Mj . Assume that Tn
t−→ 0. Then, by

Theorem 2.3 (iii), QjTn
t−→ 0 for each j ∈ J .

Fix ε > 0 and set

Zn = sup{Qi : kT (k)i kMi < ε for all k ≥ n}, n = 1, 2, . . . .

It is clear that Zn ∈ P (Z(M)) and Zn ≤ Zn+1, n = 1, 2, . . ..
Let Z0 = supn≥1 Zn. If Z0 6= I, then there is i0 ∈ J such that Z0Qi0 = 0.

On the other hand, it follows from the convergence kT (k)i kMi −→ 0
as k → ∞ that Qi0 ≤ Zn(ε) ≤ Z0 for some index n(ε), which contra-
dicts the identity Z0Qio = 0. Consequently, Zn ↑ I. Set En = Zn,
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n = 1, 2, . . .. Then En ↑ I, ZnE
⊥
n = 0 ∈ Pf (M), kTnEnkM = kTnZnkm =

supi: Qi≤Zn kT
(n)
i kMi ≤ ε.

This means that Tn
l.a.e.−→ 0.
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