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1 Definitions. Simple Properties

Let (X,3, ) be a measurable space with non-trivial measure p : 3JA €
Y, u(A) € (0,u(X)). We will assume that either pu(X) = 1, or u(X) = oo
and that the measure p is o— finite and diffuse: VA € ¥,0 < p(A4) <
o0 3B C A, ;u(B) = (A)/2. Define as usually for all the measurable function
f: X — R!

o= ([ 1o u(dsc))l/p, P> 1
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L, = L(p) = L(p; X, ) = {f,|flp < oo}. Let a = const > 1,b = const €
(a, 0], and let ¢ = 1(p) be some positive continuous on the open interval
(a,b) function, such that there exists a measurable function f : X — R for
which

b(p) = |flp: p € (a,b).

Note that the function p — p-log¥(p), p € (a,b) is convex.

The set of all such a functions we will denote ¥ : ¥ = ¥(a,b) = {¢(-)}.
The functions are described below.
Theorem 0. Let the measure p be diffuse. The function v(p), p € (a,b)
belongs to the set W if and only if there exist a two functions A1(p), Aa(p),
such that vP(p) = A1(p) + A2(p), where Ai(p) is absolute monotonic on
the interval (a,b) and Ao(p) is relative monotonic on the interval (a,b) :
vk=0,1,2,...

vp e (a.0) = AP (p) >0, (-1 (p) 2 0.
Proof. Let v(-) € U, then 3f : X — R, vP(p) =

/ [ (@)[? u(dm)Z/ exp(plog [ f(x)[))u(dx) = Ai(p) + Aa(p),
X X

where

Av(p) = / exp(plog |(z)]) p(dz), AP (p) > 0;
{z:|f(z)|>1}

Aalp) = / exp(plog | £(x)]) p(dz), (—1)*AP(p) > 0.
{z:|f(z)|<1}

Inversely, assume that vP(p) = Ai(p) + Az2(p), Agk)(p) > 0,
(—=1)®AF) (p) > 0. It follows from Bernstein’s theorem that

Ai(p) = /R exp(pt)pq (dt), Aa(p) = /R exp(pt) py(dt),

where pq, p19 are a Borel measures on the set R such that u;{(—00,0)} =
07 N’Q{(O> OO)} =0 and

Vp € (a,b) = A1(p) < 00, Ag(p) < 0.

Therefore o
VP (p) = / exp(pt) (1 (dt) + 15(dt)).
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Since the measure y is diffuse, there exists a (measurable) function n : X —
R such that

WP (p) = /X exp(n(z)) u(dz).

Thus, for f(z) = exp(n(z)) we obtain:

= /X exp(pn(z))p(dz) = vP(p), |l = v(p).

Corollary 1. Note that if (-) € ¥(a,b), ¥5(:) € ¥(c,d), max(a,c) <
min(b, d), then v, (-) - ¥5(-) € ¥(max(a,c), min(b, d)). Indeed, if

Y1(p) = | filp, ¥a(p) = | f2lps

and the functions fi, fa are independent, then we have at p € (a,b) N (¢, d)

Y1(p) - ¥a(p) = |f1 - falp-

We extend the set ¥ as follows:

EXU ™ EXW(a,b) = {v =v(p)} =

{v:()ev:0< pei&fb)w(p)/V(p) < sup ¥(p)/v(p) < oo},

p€E(a,b)

Uv Y UW(a,b) = {1 = p(p),¥p € (a,b) = P(p) > 0},

the function p — ¥(p), p € (a,b) is continuous, and such that there exist
a limits ¥ (a 4+ 0),79 (b — 0) € (0, 00]; and we define formally for convenience
Y(a) =4¢(a+0), ¥(b) =¢(b-0).

Hereafter a = const > 1, b € (a, ).

For this case we define at b = 0o (b — 0) = lim,_. 9 (p) € (0, ).

Definition 1. Let ¥(-) € U¥(a,b). The space G(¢p) = G(X,¢) =
G(X,v,u) = G(X,9,p,a,b) consist on all the measurable functions f :
X — R with finite norm

IAIGW) S sup [If[p/¢m)].

p€(a,b)

If ¥(a) < oo and 9(b) < oo, then the correspondent G(1)) space is
isimorphic to the direct sum L(a)+ L(b). In the "subcase" b < oo this space
is equivalent to the Orlicz’s space Or(X, X, p; @) with the Orlicz’s function
O(u) = Jul® + |ul’.
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Therefore, we will assume further that either (a) = oo or (b) = oo,
or both the cases: (a) = 1p(b) = oo. Briefly, min(v(a), ¥ (b)) = oc.

The spaces G(v), v € UV are non - trivial: arbitrary bounded
sup, |f(xz)] < oo measurable function f : X — R with finite support:
w(supp | f]) < oo belongs to arbitrary space G(v), Vi € UWU.

We define also B(v)) = {p: ¥(p) < oo} and recall that for arbitrary
function f: X — R supp f =l {z: f(x) #0.}

We investigate in this paper some properties of moment spaces:
the structure of some subspaces, non-separability, fundamental
functions, conditions for convergence of sequences, martingales,
Fourier series, and boundedness of singular operators.

Our results are some extensions and generalizations of papers [22], [23],
[24], [25] etc.

Some preliminary results was partially announced in [5].

We consider now a very important for applications examples of G(1))
spaces. Let a = const > 1,b = const € (a,o0];a, 8 = const. Assume also
that at b < oo min(a, ) > 0 and denote by h the (unique) root of equation

(h—a)*=(b—h)’, a<h<b; ((p) =C((a,b;a, B;p) =

(p_ a’)a7 pe (CL, h)a C(av ba aaﬁ;p) = (b_p)ﬁ’ pe [h7 b)a

and in the case b = oo assume that « > 0, 8 < 0; denote by h the (unique)
root of equation (h — a)® = h®, h > a; define in this case

((p) = C(a, by, B;p) = (p — ), p € (a,h); p=h =((p) =p .

Note that at b = oo = ((p) = (p — a)® p~°*# < min{(p — a)*,p’}, p €
(a,00) and that at b < co = ((p) < (p — a)®(b — p)? < min{(p — a)*, (b —
)}, p € (a,b). Here and further p € (a,b) = 9 (p) =< v(p) denotes that

0< inf 4(p)/v(p) < sup P(p)/v(p) < .
pE(a,b) pE(a,b)

We will denote also by the symbols C}, 5 > 1 some "constructive" finite
non - essentially positive constants. As usually, [(A) = I(A,z) = I(z €
A)=1l,ze€ A; I(A) =0,z ¢ A.

Definition 2. The space G = Gx = Gx(a,b;, 5) = G(a,b;a, 3) consists
on all measurable functions f : X — R! with finite norm

||f||G(CL,b, O‘?B) = Ssup Hf’p : C((I, baavﬁap)] .

p€E(a,b)
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Corollary 2. As we know, the cases a < 0; b < 00,8 < 0 and b =
o0, B > 0 are trivial for us and we will assume further that either 1 < a <
b < oo,min(a, f) > 0,0r 1 <a,b=o00,a>0,5<0.

Lemma 1. Lety € UV, ¢(a) = ¢(b) = 00,b < oco. There exist a two
functions v1,ve € UV, v1(a+0) € (0,00),v1(p) ~ ¥(p),p — b—0;v2(b—0) €
(0,00),v2(p) ~ ¥(p),p — a+0 such that the space G(v)) may be represented
as a direct sum

G) = G(v1) + G(va).

Proof. Indeed, if f = fi1+ f2, f1 € G(v1), v1 € U¥,v(a+0)
G(Ug), vy € U‘I/,Z/Q(b — 0) € (0,00), then f1 c G(¢), f2
feG).

Inversely, let ¢ € UV, (a) = 1(b) = co. Let pg be some number inside
the interval (a, b) such that

(O’OO); f2 €

S
€ G(v), hence

W(po) 2 € € (mint(p), 00).

Define
vi(p) =) - I(p € (a,po)) +C - I(p € [po, b)),

va(p) =C - I(p € (a,p0)) +¢(p) - I(p € [po,b)).
If f e G(y), then
f(@) = f@)I(|f(z)| = 1)+ f@)I(|f(z) <1)=fi+ fo

It fillows from Tchebychev’s inequality: p{z : |f(z)| > 1} < |f], < oo for
some p € (a,b); therefore fi; € G(v1); and since Vg > p, A € &

[ 1ntae) < [ 1£utas),

we obtain fa € G(v2).
It is evident by virtue of Liapunov’s inequality that in the bounded case

wX)=1 G¥) =G(1).
We denote by G° = G%(v), ¥ € UV the closed subspace of G(v),
consisting on all the functions f, satisfying the following condition:

i 17l /0) = T 171/0) =0,
in the case 1(a) = oo, ¥(b) = o0;

i |fl,/0(p) = 0
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in the case ¥(a) < oo, 1 (b) = o0;
i 17 /() = 0

in the case 1¥(a) = 0o, ¥(b) < oo; and by GB = GB(3) the closed span in
the norm G(7)) the set of all the bounded measurable functions with finite
support: p(supp |f|) < oo.

We prove now that G° is closed subspace of the space G. Let f, : X — R
be some sequence of a functions such that f, € G°, ||f, — f||G(¥)) — 0 as
n — oo. Let us denote 6(n) = ||fn — f||G(¢);0(n) — 0, n — oo. It follows
from the direct definition of G(v) spaces that for all p € B(1))

[flp/¢(p) < [fulp + ().

Let € € (0,1) be a given. There exists a value n for wich §(n) < €/2. Further,
as long as f, € G°(), there exists a value M = M (n) > 1 such that for
all values p satisfying a condition ¢(p) > M we have: |fy,|p/9(p) < €/2.
Following, if ¢(p) > M, then |f|,/v(p) < € and f € G°.

Another definition: for a two functions v1(-), va(-) € U¥ we will write
v << vy, iff

pggom(p)/ va(p) = pggi v1(p)/v2(p) =0

in the case va(a + 0) = v2(b — 0) = oo etc.

If for some vq(-),va(-) € UV, v; << vy and |[|f||G(v1) < oo, then
f € G%uvsz). Moreover, if there exists a sequence of a functions f,,, fs such
that for some v; € G(¢,a,b)

Vp € (a,b) = |fn — foolp = 0,n — o0

and SUPp<co anHG(VQ) < 00, then ||fn - fooHG(Vl) — 0.
We consider now some important examples. Let X = R, p(dx) = dz,1 <
a<b<oo,y=const>—1/a, v=const >—1/b, p € (a,b),

fary = fan(@) = (2] = 1) - || 7V/*(| log e |)7,

/" log z”,

Gow = gow(x) = I(|2| <1)- |z
hon () = (log |z))Y/™I(|z| < 1), m = const > 0,

fa,b;'y,u(w) = fa,’y(x) + gb,u($)> ga,'y,m(x) = hm(ZL‘) + fa,’y(x)a
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by (D) = 2(L=p/b) "L D(py + 1) + 2(p/a — 1) P 'T(py + 1),

Wb (@) =2(p/a— )PV T (py + 1) + 2T ((p/m) + 1),

I'(-) is usually Gamma - function.
We find by the direct calculation:

|fa,b;'y,l/|z - z),b;%,j(p); |ga,7,m g = ¢£,7,m(p)'

Therefore,
wa,b;'y,u(') € \P(av b)? ¢a,’y,m(') € ‘Ij(av OO)
Further,

fapyw () € Gla,b;y 4+ 1/a,v 4 1/b) \ G°(a,b;y + 1/a,v + 1/b),

ga,'y,m(') S G \ Go(aa o057y + 1/@, _1/m)>
and VA € (0,1) fopap ¢

G(a,b; (1 — A)(y+1/a),v+1/b))UG(a,b;1/a, (1 — A)(v+1/b),

Gaq,m(-) € G\ G°(a,00;7 + 1/a; —1/m).

Another examples. Put

§ob) ) = Jaf 1? exp (€1 ogal! ) I(Ja] < 1)+

I(|z| > 1)\1‘]1/“ exp <C’2(logw)l_’3) :

1<a<b<oo;a,f =const € (0,1). We have:
log | £+ ()| = (p— )Y 4 (b ), pe (o).
P

Theorem 1. The spaces G(1) with respect to the ordinary operations and
introdused norm || - ||G(¢) are Banach spaces.
We need to prove only the completness of G(v)) — spaces. Denote

e(n,m) = |[fn — fml||G(¥), e(n) = sup e(m,n),

m>n
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and assume lim,, o0 €(m,n) = 0; then lim, .. e(n) = 0. Let p(3),i =
1,2,... be the countable dense sequence of all the rational numbers of
interval (a,b). We have from the direct definition of our spaces:

Vi=1,2,... = |fo— fmlpe) < e(n,m)y(p(i)).
We conclude that there exist a functions f@, f@ € L(p(i)), such that

| = F Py < e(n)(p(i)) — 0, n— oo.

as long as the spaces L(p(i)) are complete. It is evident that

pla: 3i: fO(z) £ fD (@)} =0,

ie. fO(z) = fM(z) p— almost everywhere. Hence Vi = 1,2, ...
[fa = F W) < e(m)v(p(@),

Vp € (a,b) = |fu — V], < e(n)y(p),
o — FOUGW) = sup |fo — FV, /0 (p) < e(n) — 0,

p€E(a,b

n — oo. This completes the proof of theorem 1.
Moreover, the spaces G(-) are rearrangement invariant (r.i.) spaces with
the fundamental function

$(G,8) Y sup{||T(A)]|G, A €S, u(A) <6}; b€ (0,00).

We suppose further in this section that the measure p is diffuse (still in the
bounded case if u(X) < 00), i.e. when p(X) = 1.

In this case, for the spaces G(v), ¥(-) € UV, B(¢) = (a,b), b < oo we
have:

HG().0) = sup |87 /u(p)].

pE(ab
Note that in the case b < 0o

§<1 = 10" < ¢(G,0) < Cypd™?,

§>1 = C30'° < ¢(G,8) < Cy6t/e.
Moreover, A € (0,1) =

AMH(G,0) < ¢(G,N) < AV2¢(G, 6);
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A>1 = MGG, 6) < ¢(G,8) < AV9(G,9).
For instance, define in the case b < co §1 = exp(ah?/(h —a)), § > 6; =

p1=p1(d) =logd/(2a) — [0.250472 log? § — aatlog ) 12 ,

$1(8) = 8"/71 (p1 — @)%
§€(0,01) = ¢1(6) = 6Y"(h — a)*;
6o = exp(—h2B/(b — h)), 6 € (0,59) =
P2 = pa(8) = ~[log 8]/26 + [log®(5/(462)) + b|log 8]/5] *,
$a(8) = 61/720) (b — pa(8))”;
§> 0y = ¢o(6) = 6 (b— h)P.
We obtain after some calculations:
b<oo = ¢(G(a,b;a,B),0) = max [¢;(5), $2(d)] -
Note that as § — 0+
$(G(a,b, a, B),8) ~ (8 /e)? 6"/ |log | 7,
and as § — 0o
d(G(a,b, v, B),0) ~ (aa/e)*s'/ (log ).
In the case b = 00, 3 < 0 we have denoting
$3(5) = (B/e)” |log 6|77, 6 € (0,exp(=h|B])),
$5(0) = nVPI6YP .6 > exp(—h|B]) ;
¢(G(a, 005, =), 6) = max(;(0), $3(9)),

and we receive as § — 04 and as § — oo correspondingly:
6(G(a, 0030, =B),8) ~ (8) "] 1og 8|7,

#(G(a, o0; a, —f3), ) ~ (a’ar/e)® 6Y/%(log §) ™.
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2 Connection with another classical r.i. spaces

We define here the equivalence between a two Banach spaces (Y7, || -||Y7)
and (Y2, || - ||Y2) as the set coincidence and norm equivalent ness:

171V < GullF1IY2 < Gol| FIIYA-

Theorem 2. A. Let () € EXV, such that Jg : X — R, ¥(p) <
lg(-)|p, p € (a,b). Denote

NED(A/6) = 1/((G (). 4)), 6 € (0,00),

where N1 denotes the left inverse function to the N(-) on the set R..
If
ve>0 [ N(elg(o)]) ulde) = . (21)
X

then the space G(1) is not equivalent to arbitrary Orlicz’s space Or(X, p, D).
B. Denote T(z) = (1/¢(z))Y. If

sw)Kémﬂlﬂwm)w@fmzw, (22)

pEB(Y

then the space G(v) is not equivalent to arbitrary Marcinkiewicz’s space
M(0).

C. Let ¢(-) e U¥, B(¢) = (a,b), 1 <a <b< oo. Then the space G(3)) is
not equivalent to arbitrary Lorentz’s space L(x).

Proof. A. Assume converse, i.e. that G(¢)) ~ Or(®), where Or(®) is
some Orlicz’s space on the set (X, X, u) with corresponding (convex, even,
®(0) = 0 etc.) Orlicz’s function ®(u),u € R. Since for A € ¥, u(A) € (0, 00)

$(Or(®); u(A)) = [|[1(A)]|Or(®) = 1/ [@7(1/u(A))]

we conclude that ®(u) = N(u). Note that, because of our condition (2.1)
g(-) € G(¥) = Or(®), but g(-) ¢ Or(®). This contradiction proves the
assertion A.

As a consequence:
Lemma 2. The space G(a, b; o, 3) are equivalent to the Orlicz’s space only
in the case a=0,b= 00,8 < 0.

(The case a = 0,b = 00, 5 < 0 was considered in [12].)

Proof B. Assume converse, i.e. that the space G(¢) = G(¢,a,b) is
equivalent to some Marcinkiewicz’s space M (6) over the our measurable
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space (X, u). Recall here that in the considered case a > 1;b > a the norm
of a function f: X — R in the Marcinkiewicz’s space may be calculated by
the formula (up to norm equivalence)

1£11M(9) = sup |6() TV (£, )
>0
and that the fundamental function for the M () space in equal to

P(M(0),6) = 1/6(3),

(see, for example, [21], p. 187). Therefore, if the space G(v) is equivalent
to some Marcinkiewicz'’s space M (#), then

0(6) = 6/d(G(¢),9)).

Let us consider the function f : X — R with the tail - function T'(f, x) ~
T(x),z € (0,00), where as usual the tail function for the measurable function
f: X — R is defined by equality

T(f,z) = p{z;xz € X, |f(z)| > 2z}, 2> 0;

then f € M (@), but it follows from our condition (2.2) that f ¢ G(v).

For example, all the spaces G(a,b; «r, 3) are not equivalent to arbitrary
Marcinkiewicz’s space.

Proof C is very simple, again by means of the method of "reductio ad
absurdum". Suppose G(v)) ~ L(x), where L(x) denotes the Lorentz’s space
with some (quasi) - concave generating function x(-). Since

¢(L(x),0) = x(6) = 0,6 — 0+
and x(6) — oo, § — oo, we conclude that the space L(x) = G(v) is sep-
arable ([22], p. 150.) But we will prove further (in the section 4) that the
space G(v) are non - separable.

3 Norm’s absolute continuity of the function

We will say that the function f € G(v), ¥ € UV has absolute continuous
norm in the space G(v) and write f € GA(v), if

lim sup ||f 1a]|G(¥) = 0.
5_)0+A:M(A)§5II G ()
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The subspaces GA(v)), GB(1), G°(1)) are closed subspaces of the space G(1)).
Theorem 3. Let 1 € UWV. Then the spaces G°,GB(¢), GA() are
equal:
Gl) = GB(v) = GA®W).
For example, if min(a, |5]) > 0,1 < a < b < 0o, then
G°(a,b;a, B) = GB(a,b; o, B) = GA(a, b; av, B).

Proof. The inclusions GB C GA,GA C GB, GA C G° are obvious.
Let now f € GY; for simplicity we will suppose b < oo, (X ) = 1. Then
lim,_p_o | flp/2(p) = 0. Let € > 0. We have: ||f I(|f| > N)||G <

sup |f I(|f] > Nlp/¥(p) + sup |flp/¥(p) = X1 + X2;
pe[1,6—4] pe(b—5,b)

Yo < sup |flp/¥(p) <€/2
pE[b—6,b)

for some § € (0,b) by virtue of condition f € G°.
Further, there exists a value N > 1 such that

Y < CIFI(f1 2 N)lp-s < €/2

as long as f € Ly_s. Following, f € GB; thus G° ¢ GB.
Now we prove the inverse embedding. Let f € GB,e > 0. Then dg,

sup, |g(z)| = B < o0,V¥p € [1,0) = |f —glp/¥(p) < €/2,
|f|p < |9|p + 0-56w(p), pE [Lb);
|flp/%(p) < lglp/1(p) +0.5¢ < 0.5¢ +0.5¢ < ¢, |p—b| <9

for sufficiently small value §. Theorem 3 is proved.
We investigate here the sufficient condition for the convergence

Il fn — fool|G(¥,a,b) — 0, 1 — 0. (3.1)
Assume at first that (the necessary condition)
ANp € (a,b) = |fn— foolp — 0, n — 0.

Theorem 4. Let fp, foo € G(¢0). Assume that (in addition to the condition
A)
B. 3y(-) € UV, 1) << 1)y, such that

sup [ frllG(¥g) < oo.
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Then the convergence (3.1) holds.
Proof. We need to use the following auxiliary well - known facts.
1. Let 1 <a <be (1,00). We assert that

sup [flp < oo < max(|fle, [f]p) < oco.
p€E(a,b)

This proposition follows from the formula

fE=p /O PVD(f, 2)dz,

Tchebychev’s inequality and Fatou’s lemma.
2. Let 1 < p(1) < p < p(2) < oo, max(|fl,), [ flpe)) < oo. Then |f], <

_ _ _ — de
ISR e e OV @O L 7, (1), p(2); | Flp1). )

Proposition 2 follows from the Holder’s inequality.
It is sufficient to investigate the case b < oo; another cases may be proved
analogously. Consider the norm

2 fu = foollGW) = sup [ = foolp/t(D).

p€E(a,d)

Let € = const > 0. We have: ¥ < Y1 4+ Y9 + X3, where X1 =

sup |fn_foo|p/¢(p) <

p€(a,a+d)

Sup fn = foolp/2(p)] - sup  4(p)/1a(p) < Cla,0) <¢/3,

p€(a,a+d)

if 6 = d(e) is sufficiently small. Further, X3 =

sup [|fn = foolp/¥2(p)] - sup  [¥(p)/¥2(0)] < C(b,0) < ¢€/3.

pe(b—5.0) pe(b—5.b)

Finally, >o <

sup ’f|p/¢(P) S CZ (p,a + 57 b— 57 |fn - foo’a—&-év |fn - foo|b—6)
pE(a+6d,b—9)

< €/3 for sufficiently large values n.
Analogously may be proved the following assertion about the G(1, a, b)
convergence.
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Lemma 3. If the sequence of a functions {fn(-)} convergens in all the L,
norms:

Vp € (a,b) = lim |f, — feolp =0
n—oo
and has a uniform absolute continuous norms in the G(1,a,b) space:

lim sup sup ||fn I(A)[|G(¢,a,b) =0,
=0+ n<oo A:p(A)<s
then || fn — fool|G(¥,a,b) — 0, n — occ.
In the case pu(X) < oo the condition of lemma 3 may be replaced on the
measure convergence: Ve > (0 =

Jim gz s | fu(z) = f(2)] > €} = 0.

Note that the first condition of the lemma 3 is not sufficient for G(¢) con-
vergence. Let us consider the following example. Ler X be the interval
X = [0,1] with the classical Lebesque’s measure and let £ be a measurable
function (random variable) with standard Gaussian distribution. Let also

§(n) = &-I([§] < n). Then £(n) € G°(¢g5)),§ € G\ G7(¢g5), where

Yos(p) < [€lp ~ VB, p € [1,00).
It is easy to verify that Vp € [1,00) [ —&(n)], — 0, n — oo, but
[1€ —&(n)]|G (vg5) does not convergent to 0 as n — oo since & ¢ G° (¢g5) -
Theorem 5. Let ¢ € UV. We assert that ||f||G/G° = ||f||G/GA =

IfIG/GB = inf ||f - g||G=Tims—o+ sup [|fI(A)]G.
9eGB A:p(A)<8
Here the notation G/G° denotes the factor - space.
Proof. Suppose for simplicity b € (1,00), u(X) =1,G = G(¢),¥(a) <
00, (b) = o0; f € G\ G° Put
y=lms—o sup |[|f I(A)]|G > 0.
A:p(A)<6
Let also ¢ = g(x) be a measurable bounded function: sup, |g(z)| =

B € (0,00);k = const > 2. We conclude using the elementary inequality:
X>kY >0,k>2Y <B=const =

(X -Y)P _ (k—1F
Xp—Bp = kp—1 °

1/p
1f —gllG > sup / (@) — g@)P wldz)|  Jup) >
{z:|f(z)|>kl|g(x)]}

pe[l,b)
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1/p
limy, ;o [/ (k= 1P(R? = 1)7N(|f]P = BY) u(dz)|  /o(p) >
{lf(=)|=kB}

(k — 1)(kb — 1)~V Timg_ol|f I(A)||G = (k — 1)(k* — 1)~V 4.

Since the value of k is arbitrary, it follows from the last inequality that
|| f —gl|G > ~; this proves that infocgp || f — g||G > ~; the inverse inequality
is evident.

4 Non-separability

Recall that min(¢(a), (b)) = oo.

Theorem 6. The spaces G(v), ¥ € UV are non-separable.

Proof. The assertion of theorem 6 is trivial if the metric space
(3,p(A,B)), p(A,B) = arctan(u(AAB)) is non-separable. Therefore by
virtue of Rocklin’s theorem we can suppose that the space X is equipped
by the distance d = d(x1,z2) such that the space (X,d) is complete and
separable, the measure u is Borelian and diffuse.

Conversely, assume that the space G(v) is separable. Let {un(z)} be
a enumerable dense subset of G(¢). By virtue of Lusin’s and Prokhorov’s
theorems we conclude that there exists a compact subset Y of X with u(Y) >
0 such that on the subspace Y all the functions u,(z) are continuous. We
consider now the space G(Y,¢). The functions {u,(z)},z € Y belong to the
space GY(v). Let w(x),z € Y, be some function from the space Gy () \
G5 (1) and define w(z) =0, z € X \ Y. We get:

inf [|w — up||Gx > inf |[|w — uy||Gy > inf ||w—g||Gy >0,
n n gGGBy
in contradiction. This completes the proof of theorem 3.

Our proof of theorem 3 is the same as proof of non-separability of Orlicz’s
spaces ([1], p. 103; [2], p. 127).

5 Adjoint spaces
The complete description of the spaces conjugated to the spaces Ny, L, see in

[3], [4]. The spaces which are conjugate to the Orlicz’s spaces are described
in [2], p. 128 - 132. The structure of spaces G*(¢) is analogous.
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It is easy to verify using the classical theorem of Radon and Nicodim
that the structure of linear continuous functionals over the space GO(¢) =
GA = GB is follows: Vi € G™*(¢)) = Jg: X — R,

I(f) = /X F(@)g(x) pldz) < 1,(5).

We investigate here only some necessary conditions for the inclusion
g € G*(1). Note at first that if ¢p € U¥(a,b), ¢ € (b/(b—1),a/(a —1)) and
g € Ly, then g € G*(¢).
Theorem 7. If g € G*, then IK = K(g9) < 00 =

V>0 = /00 T(g,u)du < K¢(G,T(g,z)).

Recall that ¢(G, d) denotes the fundamental function of the space G.
Proof. Let [, € G*. It follows from the uniform boundedness principle
that Vf e G =

1y(f)] = \ /X f(2) g@)u(dz)| < K| fllo.
Put f =Ia(z),Aec X, A= {z:]|g(x)| >z}, 2> 0; then
/ " T (g, w)du = /X 9@ (lg(@)] > 2) plde) < KS(G,T(g, ).

Let now ¢ € UV, B(¢)) = (a,b),b < oo. Introduce the following N —
Orlicz’s function

Ny(u) = g?pb) [|ulPyP(p)]
pela,

then the following implication holds:

de >0 / Ny(ef)u(dr) < oo = f e G().
X
Therefore, the Orlicz’s space Or(N, X, u1) is subspace of G(1)). Following,

(G())" C (L(Ny))*

Since the function Ny (u) satisfies the Ay condition, the adjoint space (L(Hy))*
may be described as a new Orlicz’s space, namely

(L(Ny))" = L (@y), Dy(u) = sup(uz = Ny(2)).
Thus, we obtained: ¢ € U¥(a,b), 1 <a<b<oo =

(G())" C L(Dy).
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6 Tail behavior

Let f € G(v), ¥ € U¥(a,b),b < co. It follows from Tchebychev’s inequality
that

T(f,u) < inf [|[f|[P9P(p)/u”], u> 0.
p€(a,b)

Conversely,
flp=p [ T wdu, px 1
0

therefore

pEB(Y

0o 1/p
= su uil u) du .
1711G() = p)[p [ /0 P7(, >d} /W)]

In the particular case the spaces G(a,b; «, ) we obtain after simple calcu-
lations:
Theorem 8. A. Let f € G(a,b;,5),1 <a<b<oo. Then

u€(0,1/2) = T(f,u) < Ci(a,b, o, B)|logul**u™"; (5.1)

w>2 = T(f,u) < Ca(a,b,a, B)(logu)Pu?. (5.2)

B. Conversely, suppose da,b,1 < a <b < o00,v,7 > 0,C; > 0 such that
T(f,u) < Cillogu["u™, w € (0,1/2); T(f,u) < Co(logu)Tu™", u>2.

Then f € G(a,b;y+ 1,7+ 1).
C. Let now f € G(a,o00;a,—p), > 0. We propose that

T(f,u) < Ci|logul* v, uwe (0,1/2],
T(f,u) < Cyexp <—Cgul/ﬁ) yu>1/2;
D. Conversely, if da > 1,6 > 0,v >0,
T(f,u) < Ci|logu|” u % ue (0,1/2),a = const > 0,y > 0,
T(f,u) < Cyexp (—Cg,ul/ﬁ) B> 0,

then f € G(a,00;y + 1, 7).
Note in addition that at min(a, 8) > 0,b < 00

T(f,u) ~Ci|logu|*u " u— 0+ < |flp ~Calp—a) %, p— a+0;
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T(f,u) ~ Cs|logu|Pu u — oo & |flp ~ Cs(b—p) P, p—b-0

(Richter’s theorem).

We can show despite the well - known Richter’s theorem that both the
inequalities (5.1) and (5.2) are exact. Let us consider the correspondent
examples.

EXAMPLE 5.1. Let u(X) =1, i.e. let (X, X, ) be the probability space
and let p be diffuse. Consider the (measurable) discrete - valued function
f X — R such that

pl{z: f(z) = exp(exp(k))} = Cexp(Bbk —bexpk), k =1,2,...;

1/C = Zexp(ﬁbk: —bexp(k)),
k=1

and denote v = b, a(k) = a(k,v,€) = exp(ky — eexp(k)),

de
e =b—p— 0+, k(0)  log(1/0)], (k) = exp(exp(k)),
here [z] denotes the integer part of z. We get:

oo

de _
wW(e) Y el =3 alky.0) =
k=1

Cha(k(0),7,€) > C3(b—p) ™7,

therefore | £, > Cy(b— p)~5.
Further, we have at k > k(0) and k£ < k(0) correspondently

a(k+1)/a(k) <exp(y(e—2)) <1, a(k —1)/a(k) < exp(—7/e) < 1,

hence
W(e) < Csa(k(0),7,¢) < CeP8,

following |f|, < Cs(b —p) P, p e (1,b). Thus f € G(1,b;0,3). However,
T(f,z(k)) > Cexp(bBk — bexpk) = C(log z(k))»z(k)~°.

(we used the discrete analog of saddle - point method).
EXAMPLE 5.2. Let X = RL, u(dz) = dz, Q(k) = exp(aak+aexp(k)),a =
const >1,5(k) = S8, Q(1), b€ (a,0),

glx) = exp(—exp(k)) I(z € (S(k — 1), S(k)]),
k=1
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u(k) = exp(—exp(k)). We obtain analogously to the example 5.1:

p € (a,b)=|glp < (—a)*,

but
T(g,u(k)) = C(a,b, o) |logu(k)|**u(k)~*.

7 Fourier’s series and transform

In this section we investigate the boundedness of certain Fourier’s operators,
convergence and divergence Fourier’s series and transforms in G(v) spaces.
Let X = [-m,m] or X = R = (—00,00), u(dr) = dr, X = R, p(dx) =
dx/(2m) in the case X = [—m,7];¢c(n) =c(n, f) =

/7r exp(inz) f(z)dz,n = 0,£1,£2...; 27wsp[f](x) =

—T

> cln)exp(—inz), s*[f] = sup |sn[f]],

{n:lnl<M} M1

M

Flfl(z) = lim » exp(itx) f(t)dt,

M
F¥[f](z) = sup / exp(ita) f(t)dt,

M>0J-M
M

Sulf](z) = (2m)! / exp(—itz) FLf](t)dt,

-M

S*[f(=) = ;UE)!SM[f](fU)!-

Recall that if f € Ly(R),p € [1,2], then operators F, F** are well defined;
for the values p > 1, f € L, are well defined the operators sz, s*, Sar, S*.
We introduce also for arbitrary function v, such that ¢(-) € U¥, B(¢) D
(1,2], ¥, (p) = ¢¥(p/(p—1)); for s = const € (1,00) and for ¢(-) € Uy, B(y)) D
(1s)
Vs (P) =Y(sp/(s = p)); p=00 =p/(p—1) = +0o0;

for v € U¥, B(¢) D [1,5/(s — 1)),
VO (p) = ¢lps/(s = 1)/(p + /(s = 1))].
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Let A,y = const > 0; we denote for ¢ € U¥(1, c0)

Uy~ (p) = (p) (p—1)7.

It is easy to verify that if ¢y € EXW, then ¢, , € EXV.

Let Y7, Y5 be a two Banach spaces and let () : Y7 — Y5 be an operator
(not necessary linear or sublinear) defined on the space Y7 with values in Y5.
The operator () is said to be bounded from the space Y7 into the space Y3,
using the following notation:

1QI[[Y1 — Ya] < o0,

if for arbitrary f € Y1 = ||Q[f]||Y2 < C - || f]|Y1.
Theorem 9. Let 1 € UV, (1,2] C B(v). The FourierSs operator F is
bounded from the space G(1)) into the space G(v;) :

IFI[[G(¢) = G(¢1)] < o0
Proof. We will use the classical result of Hardy - Littlewood - Young:
|F[f]|p/(p—1) < C|f|pa pe (LQ]

Here C is an absolute constant.
If f € G(¥), then | fl, < ||fl|G - w(p). thercfore

\F[flp < o(p/(p = 1)) [IFIIG() = ¥1(p) |[FIIG(¥).
Theorem 10. Let X = [—m, 7], € UV, B(¢) D (1,00). We assert that

sup ||sm|[G(¢) — G(¢q,1)] < oo
M>1

Proof. Now we use the well - known result of M.Riesz:

Ism ALy — Ly] < Cp*/(p — 1), p € (1,00).

with an absolute constant C. If f € G(¢), then |f], <

vIFIGW), Isu flp < CPIIFIIGW)/ (0 = 1) = ClIFIIG@) - 11 (p).

Corollary 3. Assume in addition to the conditions of theorem 10 that
B(v) C (a,b) for some a = const > 1,a < b = const < co. Then

Y11(p) < ¥(p), p € (a,b).
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Therefore, in this case

sup [[sm||[G(¢) — G(¢)] < oo.
M>1

However, this assertion does not means that Vf € G(¢p) =
Jim[lswlf] - FIGG) = 0

see counterexamples further, in the lemma 4. If v(-) € UV, v << 1y, f €
G(v), then
Jim [lsulf] = FIG) =0,

i.e. the sequence sy/[f] convergent to the function f in the G(v) sense.

At the same assertion is true if f € G°(v)).
The assertion analogous to the assertion of theorem 10 is true for the max-
imal Fourier’s operator s*, Fourier’s transform Sp; and maximal Fourier’s
transform S* etc.

Namely, it is proved in [13], p. 163 that Vf € L,,p € (1,2] |F*[f]|, <
Cp*(p — 1)72| f|,. Following,

IE7[[G() — G (¥a0)] < 00.

Let us show the exactness of theorem 9. Let f(2) = fap(x) = |z|7V/°, |2| €
(0,1); f(z) = |$|_1/a7 lz| > 1;G = G(a,b;1/a,1/b), G/ = G(b/(b—1),a/(a—
1),(b—1)/b,(a —1)/a); then f € G. It is easy to calculate that F/[f,](t) <
Toj-1).a/(a-1)(t), t € R, 50

Flfas) € G/ \ G/

This example is true even in the case a = 1; then a/(a — 1) + co.
It is well known for the Fourier series > c(n)exp(inz) on the basis of
Riesz’s theorem that

f € Lyl-mal,3p>1 = lim |swf] - fl,=0.

This fact is true also in the Orlicz’s spaces (instead the L(p) spaces) with
N — function satisfying the so-called As N V3 conditions ([6], p. 196 - 197).
Conversely, in the exponential Orlicz’s spaces there exist a functions f, be-
longing to this spaces but such that Fourier’s series (or integrals) does not
convergent to f in the Orlicz’s norm sense [5]. Analogously, this effect is
true also in G(¢) spaces.
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Lemma 4. Let ¢y € EXV, X = [—m,7|. There exists a function f € G(1)
for which the Fourier’s series does not convergent in the G(1) norm to the
function f.

Proof. Since 9p € EXV, there exists a function f : X — R for which
|flp =< ¥(p), p € (a,b); then f € G\ G°(¢). Assume conversely, i.e.

i (sulf) = fIIG() = 0.

Since the trigonometrical system is bounded, this means that f € G, in
contradiction.

8 Martingales

Let (fn, 1) be a martingale, i.e. a monotonically non - decreasing sequence
of F, — sigmaUsubalgebras of the sigma-algebra ¥ and F,, measurable
functions f, such that Ef,11/F, = fu.

In this section we will use the probabilistic notations

Ef = /X f(@)u(dz), |fl, = EVP[fp

and notation Ef/F for the conditional expectation.

For the L, — theory of conditional expectations- and theory of martin-
gales in the case u(X) = oo and some applications see, for example, in the
book [7], pp. 330 - 347.

The Orlicz’s norm estimates for martingales are used in the modern
non-parametrical statistics, for example, in the so-called regression problem
([10], [11], [12]) etc. Namely, let us consider the following problem. Given
is the observation {£(7)}, i =1,2,3,...,n; n — oo of a view

() =g(z(@)) +e@@), i=1,2,...,

where g(-) is an unknown estimated function, {e(i)} are the errors of mea-
surements and may be an independent random variables or martingale dif-
ferences, {z(7)} is some dense set in a metric space (Z, p) with Borel measure
v: z(i) € Z.

Let {¢1(2)} be some complete orthonormal sequence of a functions, for
example, the classical trigonometrical sequence, Legengre’s or Hermitae’s
polynomials etc. Put

n 2N
() = 171> 6z 6), T(V) = r(Nym) = 3 (ep(n)?,
=1 k=N+1
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M
M = argminye( g m(V), falz) = S cx(m)n(2).
k=1
Via an investigation of confidence region for estimating function f in the L(p)
norm |f, — f|, are used the exponential bounds for the tail of distribution
of polynomial martingales.

The next facts about martingales in the unbounded case u(X) = oo
either there are in [7], p. 347 - 351, or are simple generalization of the
classical results in the case u(X) =1 ([8], [9]).

1. Let the martingale ( f,,, F},) be non - negative, ¢,d = const,0 < ¢ < d < 00
and assume that for some p > 1 sup,, |fu|p < 00. Denote by v = v(c, d) the
number of upcrossing of interval (c, d) by the (random) sequence { f,}. Then

Ev < (d—c¢)" |27 sup | fulf + 21 4 (d—c)P| .
n
2. Almost everywhere convergence. If for some p > 1 sup,, | fn|p < 00, then
Afoo(z) = limp—oo fr(z) (Mmod 1), |foolp < 0.
3. Convergence in L, norms. If 3p > 1 = sup,, |fn|p < 0o, then

nILIEO |fn - foo‘p =0.

4. Doob’s inequality: p > 1 =

sup o] < sup ([ fulp] p/(p—1).

p

In the bounded case pu(X) = 1 the convergence of martingale {f,} to some
function fo (mod p) is true under the sufficient condition sup,, |fn|1 < oo;
let us show here that in unbounded case (u(X) = oo) our condition is
unimproved. Namely, we consider the sequence of independent identically
distributed functions h; = h;j(x) such that for some p > 1

|hjlp < 005 Vs,s #p,s >1 = |hj|s = 0.

Put

n

fa(x) =Y 277hy(x), F=ofhy,j <n);

J=1

then the convergence f,,(-) (mod p) is true, despite V s # p | fn|s = oc.
It is proved in the book [10], p. 252, see also [11] that if in some Orlicz’s
space Or(X, %, u; N) = Or(N), with u(X) = 1 and with the N — Orlicz’s
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function satisfying the so-called Ay N Vg condition the martingale {f,} is
bounded:
sup || fal IOP() < ox,

then the martingale {f,,} convergent in the correspondent Orlicz’s norm:
lim ||fn — fool|OT(N) = 0.
n—oo

It is showed in the article [12] that in the exponential Orlicz’s spaces Or(N)
the Or(N) bounded martingale may divergent in the Or(/N) norm sense.
Let us prove that in the Or(NN) spaces is the same case.

Lemma 5. Let ¢ € EXV, so that ¢¥(p) < |f|p, and let the o — algebra
o(f) be an union of finite o — algebras:

o(f)=Up>iopn, card(oy) =n < oo,
op = O‘{Agn), Agn), ... ,A(”)},
with finite subsets:
Vi<n-1 = ,u(AEn_l)) < 00.
Then there exists a bounded but divergent in the G(¢) — sense martingale

(fn )+ sup 1fallG () < 00, Timp—oo|lfn = foollG(¥) > 0.

Proof. Let us consider some function f € G(v) \ G(v). Put F, =
On, fn=Ef/F,; then (fn, F,) is a (regular) bounded martingale:

sup[|ful|G' = sup |fulp/t(p) < sup [flp/v(p) =[[/|G < oo;

p€(a,b) p€E(a,d)

we used the Iensen inequality |fn|, < |flp-
Since the sigma - algebras o, are finite, f, € G%(¢). Suppose ||f, —
fl|G — 0, n — oo, then f € G°, in contradiction with choosing f.
Theorem 11. Let (f,, F,) be a martingale, ¢ € UW,

sglpllanG(w) < o0.

Then
A. |[sup follG (1g,1) < 0.
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Assume in addition that supp ¢ = (a,b),1 < a < b < oco. Then Vv €
Uy), v << Yo,
B. nhi%o ”fn - fooHG(V) =0.

Proof use the Doob’s inequality and is the same as in theorem 8 and may
be omitted.

For example, let (f,,F,) be a martingale, 1 < a < b < oo,
sup,, || fnl|G(a,b;a, B) < oo. Then in the case a > 1 are true the follow-
ing implications

|| sup | fu] ||G(a,b;a, B) < 00; VA >0 =
n

T [[fu — ool Gla b+ A, B+ AlI(b < o) — I(b = 00)]) =
if a =1, then

[sup | fu| ||G(1,b;a +1,8) < o0; VA >0 =

T [[f = fool|G(L b0+ 14+ A, 8+ AlI(b < 00) = I(b = o0)]) = 0.

It is clear that the convergence f, — f in the norm G(a,b;a, ) is true
also in the case when fo, € G°(a,b; , ).

9 Operators

In this section we assume that there is a measurable space (X,X, ) and

() is an operator not necessary linear or sublinear defined on the set

Npe(ap) Lp(X, 1), 1 < a = const < b = const < oo and taking values in

the set Npe(e,a)Lp(X, ). We will investigate the problem of boundedness of

operator () from some space G(X, ) into some another space G(X,v).
The case of Orlicz’s spaces and certain singular operators was consider

in many publications; see, for example, [18], [19], [20].

At first we consider the regular operators.

1. Define a multiplicative operator

Assume that f € L, for some s = const > 1 and denote t = t(s) = s/(s—1).
As long as

‘Qf[g”r < ‘f’s ’ ’g’rt/(r—&-t): r<s,
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we conclude: if B() D (t(s), 00), then

QNG (W) = G(Ws)] <|fls, ¥s)(p) = ¥(ps/(s —p))-

2. We consider now the convolution operator (again regular)

Conglgl(x) = f*g(x) = /Xg (xy_l) f(y) n(dy),

where X is an unimodular Lie’s group, u is its Haar’s measure. Assume that
f € Ls(X, ) for some s = const > 1. Using the classical Young inequality

|f % glr S C(r8)fls - |9lrets) rse(s))s 7> 8,C(r,s) < 1,

we observe that
[Congll |G(w) = G (6] <fl..
For example, if min(«, 5) > 0, then
||Congl[[G(L, 003, =) — G(s,00;0,0)] < C(av, B,5)|fs, s> 1.

3. Finally we consider some classical singular operators. Assume that the
operator @ satisfies the following condition: for some A,y = const > 0 and
Vpe(l o)

QU < C Iflp P (0 —1)77. (8.1)
There are many singular operators satisfying this condition, for instance,

Hilbert’s operator: X = (—m, ) (or, analogously, X = R),
H[f](x) = lim H[f](z),

e—0+

H[f](x) = (2m)! / (& — y)/ tan(y/2)]dy, A=~ =1;

e<|y|<n

maximal Hilbert’s operator

€€(0,1)
operators of Caldron - Zygmund: A = v = 1, of Karlesson - Hunt: s*, S*; \ =
1,v = 3; maximal, in particular, maximal Fourier’s, operators, for example,
def

Qfl(z) = sup

M>0

/Rf(t)[Sin(M(:L‘—t))/(w—t)] dt|: A=y =2

258



pseudodifferential operators ([15], p. 143): A = 1 = ~, oscillating operators
([14], p. 379 - 381) etc.

The following result is obvious.
Theorem 12. Let 1 € UV, B(y)) = (1,00). Assume that the operator @
satisfies the condition (8.1). Then

1QI [G () = G (¥x,)] < .

Let us consider some examples. Assume again that the operator () satis-
fies the condition (8.1). Then @ is bounded as operator from the space
G(a,b; o, B) into the space G(a,b;a1,0;), where at 1 < a < b < c0o =
o) = a,f; = f;inthecase a = 1,b < 00 = a1 = a+v,08;, = G if
a > 1,b = oo then oy = o, 81 = [+ A; ultimately, for a = 1,b = oo we
obtain: oy = a+7,58;, =0+ A\

We show now the exactness of estimations of theorem 12. Let us consider
at first the singular Hilbert’s operator for the functions defined on the set

(—m,m).
Put

f(z) = fa(x Zn 1log n sin(nz), d = const > 0;
n=2

then (see [16], p. 184; [17), p. 116]) | f(z)] =< (2+ |log(|z)])%, |flp =< pp €
[17 OO)’x € [_ﬂ-?ﬂ-] \ {0},

CH[f](z) = Znil log?n cos(nz),

n=2

H[f](x) = (2 + |log(|«)) )", [H[f]], = p™*".
Considering the examples d € (0,1),9 = g4(z) =

00 00
E nd 1SlIl nm E Tld 1COS na:

n=1 n=1

we can see that |g(z)] < |H[g]|(z),z € R\ {0}, and following |g|, =
[H[gllp, p € (1,00).
We can built more general examples considering the functions of a view

x) = anil L(n) sin(nx),
n=2
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where L(n) is some slowly varying as n — oo function. See [17], p. 187 -
188.

The case of Hilbert’s transform on the real axis is investigated analo-
gously. Namely, consider the functions

@) = /3 T N gin(ta) dt, d € (0,1),

then (see [17], p.117) CH|[f](x) =

Amﬁ*admww!HWWNXU@HXﬁmﬂ@>

following,
H[f1(), f() € G\G°(1,1/d;1,d).

Analogously, considering the example
fla)= [T sinfto)de, [£(@)] = (o).
x € R\ {0}, we observe that |[H[f](x)| < |log|z||, |z| < 1/2;
f() € G\G°(1,00;1,0), [CH[f](x)] ~ |log z[|, 2 — 0;
[H[f)(2)] < |7 2] > 1/2,
We can see that H[f](-) € G\ G°(1,00;1,1),

We are very grateful for support and attention to Prof. V. Fonf, L. Bere-
sansky, and M. Lin (Beer - Sheva, Israel). This investigation was partially
supported by ISF (Israel Science Foundation), grant N° 139/03.
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