
HAIT Journal of Science and Engineering C, Volume 4, Issues 1-2, pp. 295-304
Copyright C° 2007 Holon Institute of Technology

Approximate controllability of structured
systems with bounded input operators

Benzion Shklyar

Holon Institute of Technology, 52 Golomb St., Holon 58102, Israel
email: shk_b@hit.ac.il

Received 24 January 2006, accepted 30 January 2006

Abstract

The paper deals with approximate controllability problem for a lin-
ear distributed structured control system consisting of two distributed
control systems, connected in a series. Approximate controllability
conditions are obtained. Applications to the approximate controllabil-
ity for control sytems with delay are considered.

1 Introduction and problem statement

Research in the controllability theory has been very intensive in the last
years, so it is absolutely impossible to describe the current state and recent
progress within given paper. However the controllability theory has been
developed, as a rule, for single control systems, whereas many technical
applications use a number of control systems interrelated by different ways.

The goal of the present paper is to establish approximate controllability
conditions for a control object containing two control systems interconnected
into a series such that a control function from the first control system is an
output of the second one. An output of an object under consideration is a
state of the first system.

Let X,U,Z be Hilbert spaces, and let A,C be infinitesimal generators of
strongly continuous C0-semigroups SA (t) in X and SC (t) in Z correspond-
ingly in the class C0[1, 2].

Consider the control evolution equation [1, 2] with scalar control1

1For the sake of the simplisity the research will be restricted by scalar control only.
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ẋ (t) = Ax (t) + bw (t) , x (0) = x0, (1.1)

w (t) = Ez (t) , 0 ≤ t < +∞, (1.2)

where z(t) is a mild solution of the another control equation of the form

ż (t) = Cz (t) +Du (t) , z (0) = z0, 0 ≤ t < +∞. (1.3)

Here x (t) , x0 ∈ X, w (t) ∈ R, z (t) , z0 ∈ Z, u (t) ∈ U, b ∈ X , D : U → Z is
a linear bounded operator, E : Z → R is a linear bounded onto operator.

Let x (t, x0, w (·)) be a mild solution of equation (1.1) with initial condi-
tion x (0) = x0, generated by the control w (t), and let x (t, x0,z0, u (·)) be a
mild solution of equation (1.1) with initial condition x (0) = x0, generated
by the control (1.2), where z (t, z0, u (·)) is a mild solution of equation (1.3)
with initial condition z (0) = z0.

Definition 1.1. Equation (1.1) is said to be approximately controllable ,
if for each x1 ∈ X and ε > 0 there exist a time t1 > 0 and a control
w (·) ∈ L2 [0, t1] , , such that

k x1 − x (t1, 0, w (·)) k< ε.

Definition 1.2. Equation (1.1) is said to be approximately controllable by
equation (1.3), if for each x1 ∈ X and each ε > 0 there exist a time t1 > 0
and a control u (·) ∈ L2 ([0, t1] , U) , such that

k x1 − x (t1, 0, 0.u (·)) k< ε.

1.1 The assumptions

The assumptions on the operators A ,C, and D are listed below.

1. The operators A and C have purely point spectrums σA and σC with
no finite limit points. Eigenvalues of both A and C have multiplicities
1. For the sake of simplicity we assume that σA ∩ σC = ®.

2. All eigenvectors of the operators A and C are complete in X and Z
respectively.
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It is well-known [1-5], that if above assumptions hold, than: a mild solu-
tions x (t, x0, w (·)) and z(t, z0, u(·)) of equations (1.1) and (1.3) are defined
by the following representation formula

x(t, x0, w(·)) = SA(t)x0 +

tZ
0

SA(t− τ)bw(τ)dτ, (1.4)

z(t, z0, u(·)) = SC(t)z0 +

tZ
0

SC(t− τ)Du(τ)dτ, (1.5)

where the integrals in (1.4)-(1.5) are understood in the Bochner sense [1].
Denote by

Kt =

½
x ∈ X : ∃u (·) ∈ L2 ([0, t] , U) :

x =
R t
0 SA (t1 − τ) bE

¡R τ
0 Sc (τ − θ)Du(θ)dθ

¢
dτ

¾
(1.6)

the attainable set of equation (1.1) at the time t, t ≥ 0, generated by the
control u (·) ∈ L2 ([0, t] , U) .

Let RA (s) = (sIA −A)−1 , RC (s) = (sIC − C)−1 be resolvent operators
of the operators A and C, where IA and IC are unit operators in the spaces
X and Z respectively.

2 Main results

Lemma 2.1. Kt1 ⊆ Kt2 , ∀t1 ≤ t2.

Proof. We have

Z t

0
SA (t1 − τ) bE

µZ τ

0
Sc (τ − θ)Du(θ)dθ

¶
dτ =

Z t

0
Φ (t, θ)Du(θ)dθ,

where Φ (t, θ) =
R t
θ SA (t1 − τ) bESc (τ − θ) dτ.

Denote ξ = t2 − t1 + θ. One can writeR t1
0 Φ (t1, θ)Du(θ)dθ =

R t2
t2−t1 Φ (t1, t1 − t2 + ξ)Du(t1 − t2 + ξ)dξ =

=
R t2
t2−t1

³R t1
t1−t2+ξ SA (t1 − τ) bESc ((τ + t2 − t1)− ξ) dτ

´
Du(t1 − t2 +

ξ)dξ.
Now denote η = τ + t2 − t1. We have
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=
R t2
t2−t1

³R t1
t1−t2+ξ SA (t1 − τ) bESc ((τ + t2 − t1)− ξ) dτ

´
Du(t1 − t2 +

ξ)dξ =

=
R t2
t2−t1

³R t2
ξ SA (t2 − η) bESc (η − ξ) dτ

´
Du(t1 − t2 + ξ)dθ =

=
R t2
0 Φ (t2, ξ)Du2(ξ)dξ, where

u2(ξ) =

½
0, if 0 ≤ ξ < t2 − t1,
u(t1 − t2 + ξ), if ξ ≥ t2 − t1.

Obviously, if u(·) ∈ L2 ([0, t1] , U) , then u2(·) ∈ L2 ([0, t2] , U) . This
proves the lemma.

Theorem 2.1. For equation (1.1) to be approximately controllable on [0, t1] ,
t1 > T, by equation (1.2), it is necessary and sufficient, that

1.
Ker (λIA −A∗) ∩KerB∗ = {0} ,∀λ ∈ σA; (2.1)

2. ∃µ ∈ σC , such that

Ker (µIC − C∗) ∩KerD∗ = {0} , (2.2)

and
Ker (µIC − C) ∩KerE = {0} . (2.3)

Proof. Sufficiency. Assume that conditions (2.1)-(2.3) hold true.
Define the attainable set K generated by controls w (·) , by the formula

K =
[
t≥0

Kt. (2.4)

It follows from Lemma 2.1, that the set K is a linear subspace of the space
X.

Let g ∈ (K)⊥ = {g ∈ X∗ : (x, g) = 0,∀x ∈ K}. By (2.4), we obtain tZ
0

SA(t− τ)bE

µZ τ

0
Sc (τ − θ)Du(θ)dθ

¶
dτ, g

 ≡ 0, (2.5)

∀u (·) ∈ L2 ([0, t] , U) ,∀t ≥ 0.
We have

∞R
0

SA (t) e
−stdt = RA (s) ,

∞R
0

SC (t) e
−stdt = RC (s)[1, 2]. Ap-

plying to (2.5) the Laplace transform, we obtain by the Convolution Theo-
rem [1, 2], that

(RA(s)bERC (s)Du, g) = (RA(s)b, g)ERC (s)Du ≡ 0, ∀s /∈ σA∪σC , ∀u ∈ U
(2.6)

298



for any complex s 6∈ σA ∪ σC .
Afterward one can easily show that condition (2.6) is equivalent to the

condition

(RA(s)b, g) = 0 (2.7)

or

ERC (s)Du = 0, (2.8)

∀s /∈ σA ∪ σC , ∀u ∈ U.
Let the spectrum σA of the operator A consists of numbers λj , j =

1, 2, ..., enumerated in such a way that their absolute values are non-decreasing
with respect to j (i.e. |λj | ≥ |λj+1|).

Denote by ϕ1j , ψ
1
j , j = 1, 2, ..., eigenvectors of the operators A and A∗

respectively.
Let the spectrum σC of the operator C consists of numbers µj , j =

1, 2, ...,, enumerated in such a way that their absolute values are non-decreasing
with respect to j (i.e.

¯̄
µj
¯̄ ≥ ¯̄µj+1¯̄).

Denote by ϕ2j , ψ
2
j , j = 1, 2, ...,eigenvectors of the operators A and A∗

respectively.
One can easily show that conditions (2.2)—(2.3) are equivalent to the

condition
(Du,ψ2j )Eϕ

2
j 6= 0 for some j ∈ {1, 2, ..., .} (2.9)

It is well-known [1], that each µj ∈ σC , j = 1, 2, ... is a pole of the
resolvent RC(s) and the function ERC(s)Du has the Laurent expansion

ERC(s)Du = γj(s− µj)
−1 +RCj(s), j = 1, 2, ... (2.10)

in a neighborhood of µj , where the operator-valued function RCj(s), j =
1, 2, ..., is holomorphic in this neighborhood.

Applying to (2.10) the Caushy Theorem we obtain [6]

γj = (Du,ψ2j )Eϕ
2
j , j = 1, 2, .... (2.11)

It follows from (2.8) and (2.10) that

γj = (Du,ψ2j )Eϕ
2
j = 0, j = 1, 2, ..., (2.12)

This contradicts to (2.9).
Therefore conditions (2.2)—(2.3) imply

ERC (s0)Du 6= 0 for some s0 ∈ C. (2.13)
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By analiticity of RC(s) we have ERC (s)Du 6= 0 in a neighborgood of s0.
By (2.6) we obtain that (2.7) holds in the same neighborhood. In virtue of
analiticity of RA (s) we obtain that (2.7) holds for all regular s.

As well as for poles of RC (s) it is well-known that each λj ∈ σA, j =
1, 2, ... is a pole of the resolvent RA(s) and the function RA(s)b has the
Laurent expansion

RA(s)b = γj(s− λj)
−1 +RAj(s), j = 1, 2, ... (2.14)

in a neighborhood of λj , where the operator-valued function RAj(s), j =
1, 2, ..., is holomorphic in this neighborhood, and [6]¡

γjl, g
¢
= (b, ψ1j)

³
ϕ1jj , g

´
, j = 1, 2, .... (2.15)

It follows from (2.7) and (2.15), that¡
γj , g

¢
= (b, ψ1j )

³
ϕ1jj , g

´
= 0, j = 1, 2, .... (2.16)

One can also show that condition (2.1) is equivalent to the condition

(b, ψ1j ) 6= 0, j = 1, 2, .... (2.17)

It follows from (2.16) in (2.17), that¡
ϕ1j , g

¢
= 0, j = 1, 2, ..., . (2.18)

By assumption 3 (see the list of assumptions) (2.18) implies g = 0.
This proves the sufficiency.
Necessity. Let equation (1.1) be approximately controllable by equa-

tion (1.3) (see Definition 1.2). If (2.1) does not hold, than equation (1.1) is
not controllable [6], so it is not controllable by equation (1.3). This proves
the necessity of condition (2.1).

If (2.2) or (2.3) do not hold, then

either Ker (µIC − C∗) ∩KerD∗ 6= {0} (2.19)

or Ker (µIC − C) ∩KerE 6= {0} ,∀µ ∈ σC .

One can easily show that condition (2.19) is equivalent to condition (2.12),
so ERC (s)Du is an integer function for any u ∈ U. Since ERC (s)Du is
obtained as a result of Laplace Transform for ESC (t)Du, it has no singular-
ity at infinity. Hence by Liouville Theorem we have ERC (s)Du = 0,∀s /∈
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σC , ∀u ∈ U, i.e. (2.8) holds, so g ∈ (K)⊥ for any g 6= 0 2. The last assertion
contradicts to the approximate controllability of equation (1.1).

This proves the theorem.

3 Approximate controllability of linear differential
control systems with delays

It is well-known that many classes of linear distributed control systems can
be described by evolution equations of the form (1.1).

In this section we will show that a very important class of linear dif-
ferential control systems completely fits into the framework of the previous
section, so the controllability results of the previous section can be applied
to establishing of the approximate controllability criterion of linear delay
differential systems interconnected by the way of the previous section.

Consider a linear differential-difference systems of the form [7]

ẋ (t) = A0x (t) +A1x (t− h1) + b0v (t) , 0 < h1, (3.1)

x (0) = x0, x (τ) = ϕ (τ) a.e. on [−h1, 0] , (3.2)

ż (t) = C0z (t) + C1z (t− h2) +Du (t) , 0 < hp, (3.3)

z (0) = z0, z (τ) = ξ (τ) a.e. on [−h2, 0] , (3.4)

where v (t) = dT z (t) , d ∈ Rr is a given constant vector.
Here
x (t) , x0 ∈ Rn, ϕ (·) ∈ L2 ([−h1, 0] ,Rn) ; v (t) ∈ R;
Aj , j = 0, 1, are constant n× n matrices, b0 is a constant n-vector;
z (t) , z0 ∈ Rr, ψ (·) ∈ L2 ([−h2, 0] ,Rr) , u (t) , u0 ∈ Rl;
Cj , j = 0, 1, are constant r × r matrices, D is a constant r × l matrix.
We consider the Hilbert spaces [8]

X = Rn × L2 ([−h1, 0] ,Rn) =Mn
2 [−h1, 0], (3.5)

Z = Rr × L2 ([−h2, 0] ,Rr) =M r
2 [−h2, 0] (3.6)

as state spaces of systems (3.1) and (3.3) respectively, and V = Rr.
It is known that the problem (3.1)-(3.2) is well-posed [4, 5, 9], so it

can be described by particular case of problem (1.1)-(1.2) where the state

2 In this case equation (1.3) has no nontrivial output defined by (1.2), so K = {0}.
Thus condition (2.3) is a criterion of the existence of nontrivial input generated by the
operator E, for equation (1.2).
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space X is defined by (3.5) (see, for example, [8-10]); one can show that the
corresponding operator A satisfies the assumptions (see subsection "The
Assumptions"). We assume detA1 6= 0 to provide the assumption 2 of
subsection "The Assumptions".

The problem (3.3)-(3.4) is well-posed also, so it can be described by
particular case of problem (1.3)-(1.4) , where the state space Z is defined by
(3.6) . One can show by the same way that the corresponding operator C
satisfies the assumptions (see subsection "The Assumptions") also. Denote
the identity k × k matrix by Ik, k = n, r.

Definition 3.1. System (3.1) is said to be approximately controllable by
hereditary equation (3.3), if for any ε > 0 and for any (x1, x (·)) ∈Mn

2 [−h1, 0]
there exist (u0, ξ (·)) ∈ U and time moment t1 > 0 such that the correspond-
ing solution x (t) of system (3.1) satisfies the inequality3 k x1 − x (t) k<
ε, t1 − h1 ≤ t ≤ t1.

Theorem 3.1. System (3.1) is approximately controllable by system (3.3),
if and only if:

1.
rank

n
λIn −A0 −A1e

−λh1 , b
o
= n, ∀λ ∈ σA. (3.7)

∃µ ∈ σC , such that

2.
rank

n
µIr − C0 − C1e

−µh2 ,D
o
= r, (3.8)

and

3.
rank

n
µIr − CT

0 − CT
k e
−µh2 , d

o
= r. (3.9)

Proof. Denote: χ (t) = (x (t) , xt) , υ (t) = (u (t) , ut), where xt =
x (t+ θ) ,−h1 ≤ θ ≤ 0, ut = u (t+ θ) ,−h2 ≤ θ ≤ 0. Let AC ([−h1, 0] ,Rn)
andAC ([−h2, 0] ,Rr) be spaces of absolutely continuous Rn-valued functions
on [−h1m, 0] and Rr-valued functions on [−h2, 0] correspondingly.

It is well-known [8-10], that systems (3.1) and (3.3) can be written in
the form (1.1)-(1.2) in state spaces X and U defined above, where the infin-
itesimal operator A of the C0-semigroup SA (t) is defined in the domain

D (A) =

½
χ =

¡
x0, ϕ (·)¢ ∈ X : ϕ (·) ∈ AC ([−h1, 0] ,Rn) ,

ϕ̇ (0) = A0ϕ (0) +A1ϕ (−h1)
¾

3The norm is considered in the space Mn
2 [−h1m, 0] .
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by
Aχ = (A0ϕ (0) +A1ϕ (−h1) , ϕ̇ (·)) , (3.10)

and infinitesimal operator C of the C0-semigroup SC (t) is defined in the
domain

D (C) =

½
z =

¡
u0, ψ (·)¢ ∈ Z : ψ (·) ∈ AC ([−h2, 0] ,Rr) ,

ψ̇ (0) = C0ψ (0) + C1ψ (−h2)
¾

by
Cu =

³
C0ψ (0) + C1ψ (−h2) , ψ̇ (·)

´
, (3.11)

the input operator and operator B : V → X is given by the formula

Bv = (B0υ0, 0) ,∀υ0 ∈ Rr, (3.12)

where the operator E : U 7→ Rr is defined by Ez = dT z0,∀z = ¡z0, z (·)¢ ∈
Z.

Here all the assumptions 1-4 of the subsection ”The assumptions” for
above operators A and C are valid with T = max {nh1,rh2} [6, 7, 11, 12].
It has been proved [12] that condition (3.7) for system (3.1) is equivalent to
condition (2.1) for equation (1.1), and condition (3.8) is equivalent to con-
dition (2.2) for equation (1.1), and condition (3.9) is equivalent to condition
(2.3) for equation (1.1).

The proof of the theorem is completed by Theorem 2.1.
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