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Abstract

The infrared conductivity σ(ω) of very-high-resistivity ruthenates
and cuprates (in the normal state) was recently found to deviate from
the usual Drude behavior - σDrude(ω) ∝ ω−2. We have included the
Pippard ineffectiveness condition in the analysis of σ(ω), and obtained
that for very-high-resistivity materials, σ(ω) ∝ ω−α, with α ¿ 2.
Therefore, the Pippard condition might be a partial explanation for
the non-Drude behavior observed for the infrared conductivity of the
ruthenates and cuprates.

PACS: 72.10.-v, 72.30.+q, 74.72.-h

1 Introduction

An electronic property much studied experimentally [1 - 5] is the complex
frequency-dependent conductivity σ(ω). As is well known [6] the Landau
fermi-liquid theory (LFLT) predicts that the real part of the conductivity,
σ1(ω), follows the Drude law, which yields that for high (infrared) frequen-
cies, σDrude(ω) ∝ ω−2. The Drude law is obeyed for ordinary metals, both
the non-superconductors (e.g., noble metals) as well as conventional super-
conductors (e.g., Al, Hg) above the critical temperature Tc. On the other
hand, recent experiments show that the Drude law does not hold for very-
high-resistivity materials, such as the ruthenates and the cuprates in the
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normal state. For both the ruthenate [1, 2] SrRuO3 and the cuprates (high-
temperature superconductors in the normal state) [3, 4, 5] the infrared-
frequency conductivity data yield σ1(ω) ∝ ω−α, with α¿ 2.

The non-Drude behaviour for σ1(ω) discussed here is particularly signif-
icant because it was observed for samples characterised by a high degree of
crystallinity. This ensures that effects of disorder are not the cause of the
observed non-Drude behaviour. For all the data that we discuss here, the
experimentalists stressed the high quality of the measured samples: ”grown
epitaxially” [1 - 3] ”distinguished by large residual resistivity ratios” [2]
”crystallinity of the samples” [3, 5] etc. Correspondingly, the electron mean
free path λ of such samples is very much longer than the lattice constant
in the relevant temperature range. For example, Santi and Jarlborg [6] give
the value λ = 135 Å for SrRuO3.

In view of the crystallinity of the samples that were measured, these
seemingly anomalous σ1(ω) data have frequently been interpreted as evi-
dence for the breakdown of the LFLT for these materials. However, we
here suggest that there may be another cause that also contributes to these
results for σ1(ω). In particular, if one includes the Pippard ineffectiveness
condition (to be explained later) in the analysis of σ1(ω), then even within
the framework of the LFLT, one obtains non-Drude behavior for very-high-
resistivity materials.

We are not claiming that the ruthenates and cuprates are fermi-liquid
materials. Rather, our goal here is to call attention to the fact that the
optical conductivity can exhibit a richer variety of behaviour within the
framework of fermi-liquid theory when the Pippard condition is included.
Thus, the observed non-Drude behaviour for σ1(ω) is not by itself sufficient
evidence to establish the breakdown of the LFLT for high-resistivity mate-
rials.

In Section 2, we present the experimental data for σ1(ω). The Pip-
pard ineffectiveness condition is discussed in Section 3 and is generalized to
include time-dependent fields in Section 4. In Section 5, a model is intro-
duced for including the Pippard condition in the analysis of σ1(ω), and the
results are compared with experiment in Section 6. The summary follows
in Section 7.
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2 Experiment

2.1 Ruthenates

Dodge et al. [1] have discussed the temperature dependence of σ1(ω) for
SrRuO3 over an unusually wide range of frequencies, based on data obtained
by the experimental method appropriate to each range of ω. The data are
displayed in Fig. 1 for four temperatures, ranging from 8 K to 80 K. (The
curves will be discussed presently.) The experimental methods used include
terahertz time-domain spectroscopy (squares) [1] far-infrared transmission
(triangles) [1] and infrared reflectivity (circles) [2]. These workers found a
consistent picture for σ1(ω) over three decades of frequency, as shown in the
figure.

Figure 1: Frequency dependence of σ1(ω) for the ruthenate SrRuO3 at four
temperatures. The different symbols represent the different experimental
methods used in each frequency range, as explained in the text. The curves
are the calculated values.

There are two main features of the high-frequency (infrared) data. First,
σ1(ω) ∝ ω−α, with α = 0.4, rather than the Drude value of α = 2. Sec-
ond, the σ1(ω) data for different temperatures coalesce at high frequencies.
Therefore, in the high-frequency regime, only the σ1(ω) data at 40 K are
displayed because these data are almost indistinguishable from those taken
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at other temperatures.

2.2 High-temperature superconductors

Infrared σ(ω) data have been obtained by El Azrack et al. [3] and by
Puchkov et al. [5] for the cuprates (high-Tc superconductors in the normal
state). As was the case for SrRuO3, the experimental results were found
to be consistent with σ1(ω) ∝ ω−α, but with α ∼= 0.7. Thus, also for the
cuprates, the Drude result (α = 2) is not obtained. However, α has nearly
twice the value that characterizes SrRuO3.

The cuprate YBa2Cu3O6.95 measured by Puchkov et al. [5] is an optimally-
doped high-Tc superconductor and thus there is no pseudo-gap in the normal
state to complicate the analysis. Moreover, the σ1(ω) data we discuss here
correspond to the electric field parallel to the a-axis and thus there is no con-
tribution from the chains. Yet, even for this simplest case, Drude behavior
was not found for σ1(ω).

As was the case for the ruthenates, it was also found for YBa2Cu3O6.95 in
the normal state that the high-frequency σ1(ω) data are almost independent
of temperature [5].

3 Pippard ineffectiveness condition

3.1 Previous work

Many years ago, Pippard [7] pointed out that the finite mean free path of
phonons in a metal requires a modification of the usual transport theory.
He used this idea as the basis for a successful calculation of the seemingly
anomalous ultrasonic attentuation of metals. Subsequently, Pippard’s idea
was extended by other workers to the finite mean free path of electrons,
and has provided the explanation for a remarkable variety of transport data.
These include the thermal conductivity [8] the reduction of the superconduc-
tor transition temperature of high-resistivity alloys [9] saturation effects in
electron transport [10] the electrical resistivity of high-resistivity amorphous
alloys [11, 12] the anomalous temperature dependence of the resistivity of
potassium alloys [13] and negative deviations from Matthiessen’s rule for
irradiated samples of SrRuO3 [14]. Here, we show that a generalization of
Pippard’s idea is also relevant to σ1(ω) and can lead to non-Drude behavior.
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3.2 Wave packets and ineffective electron scattering

A key feature in the analysis is that for materials having a high electrical
resistivity, the electron mean free path is very short, and therefore, the
electron can no longer be described as a wave with a sharp wave-vector value
k, but rather one has to deal with wave packets and a spread of k-values [12].
As Cote and Meisels have explained (for electron-phonon scattering), the
short electron mean free path implies that those phonons whose wavelength
exceeds the electron mean free path are ineffective electron scatterers, and
therefore the scattering is diminished [11, 12]. The Pippard condition is
sometimes incorporated into the calculation of the electrical resistivity by
removing the contribution of the low-q phonons from the resistivity integral
[10].

For these reasons, when the Pippard idea is applied to electron transport,
it is often referred to as the ”Pippard ineffectiveness condition” [11]. This
term implies that certain electron scattering processes are ”ineffective” in
degrading the current and thus do not contribute to the resistivity. As a
result, the resistivity is smaller, or equivalently, the conductivity is larger
than the value predicted without including the Pippard condition.

The Pippard idea also expresses itself in the σ1(ω) data under discussion
here. If σ1(ω) is observed to fall off more slowly than quadratically with
frequency (α ¿ 2), then the values of σ1(ω) are larger than predicted by
the Drude law, which does not take account of the Pippard ineffectiveness
condition.

4 Discussion

4.1 Static electric fields

In the absence of scattering events, a static, spatially-independent electric
field E drives a Bloch electron forward in k-space according to the well-
known equation

~dk/dt = −eE. (1)

It can be shown [15] using crystal-momentum representation that this equa-
tion is exact for Bloch electrons for a spatially-independent field E.

There are two implications of electron scattering. First, one can no longer
speak of a pure Bloch state having a specific quantum number k, but one
must speak of a wave packet centered around k. Second, Eq. (1) for dk/dt
is not exact, because the scattering potential (due to impurities, phonons,
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etc.) is not spatially-independent. Therefore, the wave packet changes its
shape somewhat as it moves in k-space under the influence of the field.

Since the shape of the wave packet changes, a single vector k is not suffi-
cient to completely define the wave packet, implying an inherent ambiguity
in the use of a vector k to describe an electron state. As a result, a scat-
tering event is effective in degrading the current only if the electron wave
packet is scattered to a final state outside the region of the ambiguity in k.
Smaller-angle scattering events are ineffective (Pippard condition) and do
not contribute to the resistivity because the electron wave packet does not
”see” the scatterer [12].

4.2 Time-dependent electric fields

For time-dependent fields, there is an additional factor to be considered,
namely, the effect on the resistivity of the oscillations of the electron wave
packet. Such oscillations act to reduce the conductivity σ1(ω), as given
by the Drude law. However, the effectiveness of the frequency-dependent
reduction of σ1(ω) is mitigated by the fact that a single vector k is insufficient
to completely describe the electron wave packet.

When a time-dependent electric field of frequency ω, E = Eoe
−iωt, is

applied to a system of Bloch electrons, the change in the k-vector of the
electrons, δk, is given by

(d/dt)(~δk) = ~(τ−1 − iω)δk = −eE. (2)

Since the current j(= σE) is given by −neδv = (−ne~/m)δk, where δv
is the drift velocity, τ is the relaxation time, n is the electron density and
m is an appropriate effective mass, it follows that

σ(ω) = (ne2/m)(τ−1 − iω)−1. (3)

Equation (3) leads directly to the Drude law for σ1(ω).
This standard derivation of the Drude law assumes that Eq. (2) for

δk accurately describes the time dependence of the electron wave packet.
However, because of electron scattering, Eq. (2) is not exact and the vector
δk refers to the change in position in k-space of the wave packet, whose
shape changes with time and hence cannot be described by a single vector
k. Therefore, Eq. (3) is an approximation, which becomes increasingly poor
as ω increases.
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4.3 Qualitative discussion

It is useful to illustrate these ideas by means of a figure. The coefficient of
~δk in Eq. (2) can be considered a complex vector, which we denote by Ω
(depicted in Fig. 2b), having real part τ−1 and imaginary part−ω. Equation
(3) may then be written σ(ω) = (ne2/m)Ω−1. The inverse complex vector
Ω−1 has a magnitude that equals the reciprocal of the magnitude of Ω, and
it is directed along the same angle α from the imaginary axis as is Ω but
in the positive direction (Fig. 2a). The real part of Ω−1 gives the required
quantity σ1(ω).

Figure 2: Schematic diagrams of the complex vectors (a) Ω−1 and (b) Ω.
The angle α is the same for the two vectors.
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As the frequency increases, the magnitude of the vector Ω increases and
the angle α decreases as Ω rotates toward the imaginary axis. Accordingly,
the vector Ω−1 also rotates toward the imaginary axis, since the angle α
must be the same for both vectors. Moreover, its magnitude decreases.
Consequently, at high frequencies, the real part of the vector Ω−1 is very
small.

The Pippard ineffectiveness condition stems from the non-zero τ−1, which
leads to an ambiguity in k. As a result, Eq. (2) is only an approximate ex-
pression for the dynamic behavior of the electron wave packet. This ambigu-
ity in k (Eq. (2)) implies corresponding ambiguities in Ω and Ω−1 (Eq. (3)),
and hence in σ1(ω). At low frequencies for which σ1(ω) is large, the approxi-
mate nature of Eq. (3) is unimportant. However, as the frequency increases,
σ1(ω) decreases until it becomes comparable in magnitude to its ambiguity.
This retards the rate at which σ1(ω) approaches zero. Thus, at sufficiently
high frequencies, the Pippard condition must be included in the calculation
of σ1(ω).

For low-τ−1 materials (ordinary metals), the relevant frequencies are
so high that the σ1(ω) data are, in practice, unaffected by the Pippard
condition. However, for the higher-τ−1 materials discussed here, the high-
frequency regime will be seen to begin in the infrared region and the Pippard
condition is therefore relevant to the data reported for σ1(ω).

5 A simple model

A first-principles calculation of σ1(ω) including the Pippard condition is
beyond present capabilities. Therefore, we shall explore the consequences
of a simple model which simulates the effect of the ambiguity in k on the
frequency dependence of σ1(ω). The key point to be modelled is that for high
frequencies, σ1(ω) becomes very small and is no longer accurately given by
Eq. (3). The true value of σ1(ω) is larger than predicted by Eq. (3), which
does not include the Pippard condition.

In constructing the model, we turn for guidance to the static case of
electron-phonon scattering. In that case, the Pippard ineffectiveness of
small-q electron-phonon scattering is included in the calculation [9 - 14]
by inserting into the resistivity integral, the ”Pippard function” f(qλ) (λ is
the electron mean free path). This function, first derived by Pippard [7] is
given by

f(y) = (2/π)[
y tan−1(y)
y − tan−1(y) −

3

y
]. (4)
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As readily seen, the Pippard function approaches unity for a long elec-
tron mean free path and approaches zero as the mean free path diminishes.
Because f(qλ) is numerically almost undistinguishable from a phonon cut-
off, in practice, a cutoff in the resistivity integral is often used in resistivity
calculations [10 - 14].

Our model for the dynamic case consists of constructing a function anal-
ogous to the Pippard function for the static case. In the latter case, previous
workers [10 - 15] have shown that the transport integrand derived without
the Pippard condition is simply to be multiplied by the Pippard function.
Similarly, in the dynamic case, the frequency in the expression for σ1(ω)
without the Pippard condition is to be divided by an appropriate function
F (ω). The function F (ω) expresses the fact that at high frequencies, the os-
cillations are ineffective in reducing σ1(ω) because the electron wave packet
does not ”feel” the rapid oscillations.

The basic idea is that the true frequency with the Pippard condition is
equivalent to a smaller effective frequency without the Pippard condition.
We thus include the Pippard condition by means of an effective frequency,
that is, by replacing ω by ω/F (ω), where the function F (ω) increases with
increasing frequencies.

Since the magnitude of σ1(ω) itself plays a central role in determining
when the function F (ω) begins to deviate significantly from unity, F (ω)
must depend on σ1(ω), and we therefore write F (σ1(ω)). This leads to
a kind of feedback effect, with σ1(ω) influencing F (σ1(ω)), which in turn
determines the value of σ1(ω).

Expanding F (σ1(ω)) in a Taylor series and retaining only the first few
terms yields,

F (σ1(ω)) ≈ 1 +A1/σ1(ω) + [A2/σ1(ω)]2 + [A3/σ1(ω)]3. (5)

The values of the Ai depend in a complicated way on the material proper-
ties of the conductor under consideration. We take them to be adjustable
parameters. In practice, we retained terms up to A3, finding in each case
that the A3 term makes a negligible contribution for F (σ1(ω)). This justifies
ignoring higher-order terms.

This completes the specification of the model. One obtains σ1(ω) by
writing the real part of Eq. (3) and replacing ω by ω/F (σ1(ω)), which
yields

σ1(ω) = (ne
2τ/m)[1 + ω2τ2/F 2(σ1(ω))]

−1, (6)

where F (σ1(ω)) is given by Eq. (5). The parameters Ai are chosen to give
the best fit to the experimental data.
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The proposed model has been specifically designed to simulate the con-
sequences of the Pippard condition for σ1(ω) and is not reliable beyond its
intended purpose. In particular, the replacement of ω by ω/F (σ1(ω)) is
not an appropriate approximation for σ2(ω), the imaginary part of σ(ω).
Moreover, Eq. (6) does not accurately give σ1(ω) for all frequencies, but
only for the frequency range of the data. Therefore, it is not legitimate to
extract values for σ2(ω) from the values of σ1(ω) given by Eq. (6) through
the Kramers-Kronig relations.

6 Comparison with experiment

6.1 Low-resistivity materials

These materials include the ordinary metals and the conventional supercon-
ductors in the normal state. For these metals, the electrical resistivity is
1-2 orders of magnitude smaller than for the ruthenates and the cuprates
in the normal state. As a result, the first term in (5) dominates, yielding
F (σ1(ω)) ≈ 1. Hence, one immediately recovers the Drude law. Because the
ambiguity in k-space is very small for low-resistivity materials, the Pippard
condition is correspondingly inconsequential.

SrRuO3 YBa2Cu3O6.95 Bi2Sr2CaCu2O8 Bi2Sr2Ca2Cu3O10
A1/σ1(ω) 60 1.45 28 16
[A2/σ1(ω)]

2 141 0.02 - -
[A3/σ1(ω)]

3 0.0 0.00 - -

Table 1: Values of the ratios [Ai/σ1(ω)]
i at a frequency in the infrared regime

(ω = 1000 cm−1). The values were obtained by fitting to the σ1(ω) data for
the ruthenate SrRuO3 and for the high-temperature superconductors in the
normal state, as discussed in the text (YBa2Cu3O6.95, Bi2Sr2CaCu2O8 and
Bi2Sr2Ca2Cu3O10).

6.2 High-resistivity materials - ruthenates

For the ruthenates, the resistivity is so high that the function F (σ1(ω)) plays
a significant role. Therefore, the Pippard condition is important. Solving
Eq. (6) for σ1(ω) as a function of ω yields the curves in Fig. 1 for the
four measured temperatures. One notes the agreement between the curves
and the experimental points. Therefore, the model does seem to have some
relevance to the σ1(ω) data.
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In Table 1, we present the values obtained for the three ratios [Ai/σ1(ω)]
i

at an infrared frequency (ω = 1000 cm−1). It is seen that [A3/σ1(ω)]3 is
negligible.

What is presented here cannot be the whole story. The function F (σ1(ω))
was approximated by a Taylor expansion. Moreover, at sufficiently high fre-
quencies, the model must break down and one returns to the Drude limit for
σ1(ω) to ensure that the Fourier transform of the response function does not
correspond to an infinite perturbation at time zero. In practice, however,
interband transitions prevent this high-frequency limit from being realized.

Examining the resulting values of the parameters Ai shows that the term
containing A2 is dominant. If one discards the other terms, a straightfor-
ward analysis of Eq. (6) yields that at high frequencies, σ1(ω) ∝ ω−2/5, as
reported [1] for these data. Moreover, the curves for σ1(ω) coalesce at high
frequencies, independent of the temperature (relaxation time), which is also
consistent with the data.

Figure 3: Frequency dependence of σ1(ω) for the cuprate superconductor
YBa2Cu3O6.95 measured at two temperatures above Tc. The curves are the
calculated values.
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6.3 High-resistivity materials - cuprates

In Fig. 3, we display the σ1(ω) data for the optimally doped cuprate super-
conductor YBa2Cu3O6.95 measured by Puchkov et al. [5] at two different
temperatures above Tc. The curves in Fig. 3 represent the solutions to Eq.
(6) for σ1(ω) at the measured temperatures.

In Table 1, we present the values obtained for the three ratios [Ai/σ1(ω)]
i

at a frequency in the infrared regime (ω = 1000 cm−1).
It is seen from Table 1 that the dominant term is A1/σ1(ω). If one

discards the other Ai terms, analysis of Eq. (6) yields that at high frequen-
cies, σ1(ω) ∝ ω−2/3, in agreement with the data. Moreover, the curves for
σ1(ω) tend to coalesce at high frequencies, independent of the temperature
(relaxation time), which is also consistent with the data.

Figure 4: Frequency dependence of σ1(ω) for cuprate superconductors
measured at room temperature. The upper and lower symbols represent
Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10, respectively. The curves are the
calculated values.

Measurements of σ1(ω) have also been carried out at room temperature
for a number of cuprate superconductors by El Azrak et al. [3] In all cases,
σ1(ω) exhibits power-law behavior at high frequencies, σ1(ω) ∝ ω−α, with
the observed value [16] of the exponent being α ∼= 0.7. We shall focus on

62



Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 because the σ1(ω) data for these two
superconductors had the least scatter.

The experimental values for σ1(ω) for Bi2Sr2Ca2Cu3O10 and
Bi2Sr2CaCu2O8 are presented in Fig. 4. Since each superconductor was
measured only at a single temperature (room temperature), there are insuf-
ficient data to determine all of the Ai parameters. Therefore, we build on
the results obtained for the other cuprate, and assume that the A1 term is
dominant. This yields the curves in Fig. 4. In particular, σ1(ω) ∝ ω−2/3 at
high frequencies, in agreement with the data.

7 Summary and conclusions

We have shown that for very-high-resistivity materials, the Pippard ineffec-
tiveness condition may play an important role in the analysis of σ1(ω) and
may lead to significant deviations from the Drude law. We have applied
our results for σ1(ω) to the ruthenates and to the cuprate superconductors
in the normal state, finding agreement with experiment for each material.
This does not, of course, prove that the Pippard condition is the correct
explanation for the non-Drude behavior observed for σ1(ω) for these ma-
terials. However, our results do indicate that for high-resistivity materials,
non-Drude behavior for σ1(ω) cannot be taken as evidence for anomalous
behavior which cannot be explained within the framework of the Landau
fermi-liquid theory.

L.K. acknowledges support by the Israel Science Foundation founded by
the Israel Academy of Sciences and Humanities.
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