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Abstract

We review our recent results on short time approximations, with
emphasis on applications for which the system-environment interac-
tions involve a general non-Hermitian system operator Λ, and its con-
jugate, Λ†. We evaluate the onset of decoherence at low temperatures
in open quantum systems. The developed approach is complemen-
tary to Markovian approximations and appropriate for evaluation of
quantum computing schemes. Example of a spin system coupled to a
bosonic heat bath via Λ ∝ σ− is discussed.

PACS: 03.65.Yz, 03.67.-a

1 Introduction

The coupling of a quantum system to environmental degrees of freedom
induces decoherence, destroying quantum superposition and reducing pure
states to mixed states. Understanding of decoherence is important for quan-
tum control and computing and, generally, for obtaining a description to
the evolution of the system’s reduced density matrix with the environmen-
tal modes traced over. Since this can not be done exactly in most cases,
different approximation techniques, which are valid for different time scales,
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were developed. For short times, appropriate for quantum computing gate
functions and, generally, for controlled quantum dynamics, approximation
schemes for the density matrix have been suggested recently [1—4]. The
present survey introduces a new [1] rather general short-time approximation
which applies for models with system-bath interactions involving a general
system operator. It thus extends the previously known approach [3, 4] de-
veloped for couplings involving a single Hermitian system operator.

We assume that the Hamiltonian of an open quantum system is

H = HS +HB +HI , (1)

where HS describes the system coupled to a fluctuating dynamical reservoir
(the bath). Typically, the bath is modeled by the harmonic modes, as
reviewed in [5],

HB =
X
k

ωkb
†
kbk. (2)

Here bk are the annihilation operators of the bath modes, and we use the
convention ~ = 1. We assume that the interaction with the bath involves
the system operator Λ that couples linearly to the bath modes, as reviewed
in [6],

HI = Λ
X
k

gkb
†
k + Λ

†X
k

g∗kbk, (3)

with the interaction constants gk.
Let R(t) denote the overall density matrix. It is assumed [3, 7] that

at time t = 0 the system and bath are not entangled, and the bath modes
are thermalized (β ≡ 1/kT ):

R (0) = ρ (0)
Y
k

θk, (4)

θk ≡ (1− e−βωk) e−βωkb
†
kbk . (5)

We point out that while the quantum system S, described by the
reduced density matrix ρ(t) = TrBR (t), is small, typically two-state (qubit)
or several-qubit, the bath has many degrees of freedom. The combined
effect of the bath modes on the system can be large even if each of them is
influenced little by the system. This has been the basis for the arguments
for the harmonic approximation for the bath modes and the linearity of the
interaction, as well as for the Markovian approximations [6, 7] that assume
that the bath modes are “reset” to the thermal state by the “rest of the
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universe” on time scales shorter than any dynamical time of the system
interacting with the bath.

The frequencies of the oscillators of the bath are usually assumed to
be distributed from zero to some cutoff value ωc. The bath modes with the
frequencies close to the energy gaps of the system, ∆Eij = Ei − Ej , con-
tribute to the “resonant” thermalization and decoherence processes. Within
the Markovian schemes, the diagonal elements of the reduced density ma-
trix of the system, approach the thermal values ∝ e−Ei/kT for large times
exponentially, on time scale T1. The off-diagonal elements vanish, which
represents decoherence, on time scale T2, which, for resonant processes, is
given by T2 ' 2T1. However, generally decoherence is expected to be faster
than thermalization because, in addition to resonant processes, it can involve
virtual processes that do not conserve energy. It has been argued that this
additional “pure” decoherence is dominated by the bath modes with near-
zero frequencies [3, 6, 7]. At low temperatures, this “pure decoherence” is
expected [8] to make T2 ¿ T1.

Since the resetting of these low-frequency modes to the thermal state
occurs on time scales ~/kT = β, the Markovian approach cannot be used
at low temperatures [3, 7]. For quantum computing in semiconductor-
heterostructure architectures [8—15], temperatures as low as few tens of mK
are needed. This brings the thermal time scale to β ∼ 10−9 sec, which is
close to the single-qubit control times 10−11-10−7 sec. Alternatives to the
Markovian approximation have been suggested [1—4, 16—21].

2 Short-time approximation

In quantum computing applications, calculations with only a single qubit or
few qubits are necessary for evaluation of the local “noise,” to use the criteria
for quantum error correction [22—27]. For example, the system Hamiltonian
is frequently taken proportional to the Pauli matrix σz. The interaction
operator Λ can be proportional to σx, which is Hermitian. Such cases are
covered by the short-time approximation developed earlier [3, 4]. However,
one can also consider models with Λ ∝ σ−. Similarly, models with non-
Hermitian Λ are encountered in quantum optics [28]. In this Section, we
develop our short time approximation scheme. Results for a spin-boson
type model are given in the next Section.

We derive a general expression for the time evolution operator of
the system (1)—(3) within the short time approximation. The overall den-
sity matrix, assuming time-independent Hamiltonian over the quantum-
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computation gate function time intervals [8—15], evolves according to

R (t) = U(t)R (0) [U(t)]†, (6)

U(t) ≡ e−i(HS+HB+HI)t. (7)

The general idea of our approach is to break the exponential operator in (
7) into products of simpler exponentials. This involves an approximation,

but allows us to replace system operators by their eigenvalues, when spec-
tral representations are used, and then calculate the trace of R(t) over the
bath modes, obtaining explicit expressions for the elements of the reduced
density matrix of the system. For Hermitian coupling operators, Λ† = Λ,
our approach reduces to known results [3, 4].

In order to define “short time,” we consider dimensionless combina-
tions involving the time variable t. There are several time scales in the prob-
lem. These include the inverse of the cutoff frequency of the bath modes,
1/ωc, the thermal time β = 1/kT , and the internal characteristic times of the
system 1/∆Eij . Also, there are time scales associated with the system-bath
interaction-generated thermalization and decoherence, T1,2. The shortest
time scale at low temperatures (when β is large) is typically 1/ωc. The
most straightforward expansion in t yields a series in powers of ωct. The
aim of developing more sophisticated short-time approximations [1, 3, 4]
has been to preserve unitarity and obtain expressions approximately valid
up to intermediate times, of order of the system and interaction-generated
time scales. The applicability for intermediate times can only be argued for
heuristically in most cases, and checked by model calculations.

We split the exponential evolution operator into terms that do not
have any noncommuting system operators in them. This requires an ap-
proximation. For short times, we start by using the factorization

e−i(HS+HB+HI)t+O(t3)

= e−
i
2
HSte−i(HI+HB)te−

i
2
HSt, (8)

where we have neglected terms of the third and higher orders in t in the
exponent. The middle exponential in (8),

Ξ ≡ e−i(HB+HI)t = e−i(HB+ΛG
†+Λ†G)t, (9)

where
G ≡

X
k

g∗kbk, (10)
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still involves noncommuting terms as long as Λ is non-Hermitian. In terms
of the Hermitian operators

L ≡ 1
2

³
Λ+ Λ†

´
, (11)

M ≡ i

2

³
Λ− Λ†

´
, (12)

we have
ΛG† + Λ†G = L

³
G+G†

´
+ iM

³
G−G†

´
. (13)

We then carry out two additional short-time factorizations within the same
quadratic-in-t (in the exponent) order of approximation,

Ξ = e
1
2 [M(G−G†)−iHB]te

i
2
HBt (14)

× e−i[HB+L(G+G†)]te
i
2
HBte

1
2 [M(G−G†)−iHB]t.

This factorization is chosen in such a way that Ξ remains unitary, and for
M = 0 or L = 0 the expression is identical to that used for the Hermitian
case [3, 4]. The evolution operator then takes the form

U = e−
i
2
HSt Ξ e−

i
2
HSt, (15)

with Ξ from (14), which is an approximation in terms of a product of several
unitary operators. The form of the higher-order corrections was considered
in [1].

It has been recognized [1, 3, 4] that approximations of this sort, which
are not perturbative in powers of HI , are superior to the straightforward
expansion in powers of ωct. Specifically, in (8), we notice that HS is factored
out in such a way that HB, which commutes with HS , drops out of many
commutators that enter the higher-order correction terms. This suggests
that a redefinition of the energies of the modes of HB should have only
a limited effect on the corrections and serves as a heuristic argument for
the approximation being valid beyond the shortest time scale 1/ωc, up to
intermediate time scales.

Our goal is to approximate the reduced density matrix of the system.
We consider its energy-basis matrix elements,

ρmn (t) = TrB hm|UR (0)U † |ni , (16)

where
HS |ni = En |ni . (17)
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We next use the factorization (8), (14) to systematically replace system
operators by c-numbers, by inserting decompositions of the unit operator in
the bases defined by HS , L, and M . First, we collect the expressions (4),
(14), (15), (17), and use two energy-basis decompositions of unity to get

ρmn (t) =
X
p q

e
i
2
(En+Eq−Em−Ep)tρpq (0)

× TrB [hm|Ξ |pi
Y
k

θk hq|Ξ† |ni
i
. (18)

We define the eigenstates of L and M ,

L |λi = λ |λi ,M |µi = µ |µi . (19)

The operators Ξ and Ξ† introduce exponentials in (18) that contain L or
M in the power. By appropriately inserting

P
λ

|λi hλ| or P
µ
|µi hµ| between

these exponentials, we can convert all the remaining system operators to
c-numbers.

Now the trace in (18) can be evaluated, by using operator identities
for bosonic operators [28] and the coherent-states technique. We obtain our
final result for the density matrix evolution [1],

ρmn (t) =
X
p,q

X
µjλj

e
i
2
(En+Eq−Em−Ep)t−Pρpq (0)

× hm| µ1i hµ1| λ1i hλ1 |µ2i hµ2| pi
× hq| µ3i hµ3| λ2i hλ2 |µ4i hµ4| ni , (20)

where the first sum over p and q is over the energy eigenstates of the system;
the second sum is over λ1, λ2 and µ1, . . . , µ4, which label the eigenstates of
the operators L and M , respectively. The power in the exponential is

P = B2 (t)
¡
λ2− + µ0−µ

00
−
¢
+B2 (t/2)

¡
µ00− − µ0−

¢2
− F (t)

¡
µ00− − µ0−

¢
λ− − iC (t)λ−λ+ − iC (t/2)

× ¡
µ0−µ

0
+ + µ00−µ

00
+

¢
+ iS (t)

¡
λ−µ00+ − λ+µ

0
−
¢

− iC1 (t)µ
0
−µ

00
+. (21)

Here we introduced the variables

µ0± = µ1 ± µ4, (22)

µ00± = µ2 ± µ3, (23)
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and
λ± = λ1 ± λ2. (24)

and the spectral sums over the bath modes,

B2 (t) = 2
X
k

|gk|2
ω2k

sin2
ωkt

2
coth

βωk
2

, (25)

C (t) =
X
k

|gk|2
ω2k

(ωkt− sinωkt) ; (26)

these functions are well known [29, 30]. The result also involves the new
spectral functions

S (t) = −2
X
k

|gk|2
ω2k

sin2
ωkt

2
, (27)

F (t) = 4
X
k

|gk|2
ω2k

sin2
ωkt

4
sin

ωkt

2
coth

βωk
2

. (28)

Furthermore, we defined

C1 (t) = 2C (t/2)− C (t) . (29)

3 Discussion and application

In most applications evaluation of decoherence will require short-time ex-
pressions for the reduced density matrix of a single qubit. Few- and multi-
qubit systems will have to be treated by utilizing additive quantities [31—33],
accounting for quantum error correction (requiring measurement), etc. For
a two-state system–a qubit–the summation in (20) involves 28 = 64 terms,
each of them being a product of several factors calculation of which is
straightforward. We carry out the calculation for an illustrative example.

We consider the model [34] defined by

H = Aσz +
X
k

ωkb
†
kbk +

X
k

³
gkσ−b

†
k + g∗kσ+bk

´
, (30)

where A ≥ 0 is a constant, σ± = 1
2(σx± iσy) and σz are the Pauli matrices,

b†k and bk are the bosonic creation and annihilation operators, and gk are
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the coupling constants. Physically this model may describe, for example,
a qubit interacting with a bath of phonons, or a two-level molecule in an
electromagnetic field. In the latter case, this is a variant of the multi-mode
Jaynes-Cummings model [28, 35]. Certain spectral properties of this model,
the field-theoretic counterpart of which is known as the Lee field theory, are
known analytically, e.g., [36]. However, the trace over the bosonic modes,
to obtain the reduced density matrix for the spin, has not been calculated
exactly.

For the model (30) we have Λ = σ− and Λ† = σ+, so that L = σx/2
andM = σy/2.We have |λ1,2i = (|↑i ± |↓i) /

√
2, with the eigenvalues λ1,2 =

±1/2, and ¯̄µ1,2® = (|↑i ± i |↓i) /√2, with the eigenvalues µ1,2 = ±1/2. For
the initial state, let us assume that the spin at t = 0 is in the excited state
|↑i h↑|, so that the initial density matrix has the form

ρ (0) =

µ
1 0
0 0

¶
. (31)

Our calculation yielded the following results for the density matrix elements:
ρ12(t) = 0 and

4ρ11 (t) = 2 + e−2B
2(t) + e−4B

2( t2) cosh (2F )

+ 2e−2B
2( t2) sinh (B1) cos (S) + 2e

−B2( t2)

× cos (C1) sin (S) + ie−B
2(t)−B2( t2)

£
eiC1

× sinh (−iS + F ) + e−iC1 sinh (−iS − F )
¤
,

where C1 was defined in (29) and

B1(t) = 2B
2 (t/2)−B2 (t) . (32)

Where not explicitly shown, the argument of all the spectral functions en-
tering (32) is t.

In order to obtain irreversible behavior and evaluate a measure of
decoherence, we consider the continuum limit of infinite number of bath
modes. We introduce the density of the bosonic bath states D (ω), incorpo-
rating a large-frequency cutoff ωc, and replace the summations in (25)—(28)
by integrations over ω [5, 29, 37, 38]. For instance, (25) takes the form

B2 (t) =

∞Z
0

dω
D (ω) |g(ω)|2

ω2
sin2

ωt

2
coth

βω

2
. (33)
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We will use the standard Ohmic-dissipation [5] expression, with an expo-
nential cutoff, for our illustrative calculation,

D (ω) |g(ω)|2 = Ωω e−ω/ωc , (34)

where Ω is a constant.

Figure 1: Schematic behavior of s (t) for different values of Ω, decreasing
from i to iv.

Our results for the density matrix elements depend on the dimension-
less variable ωct, as well as on the dimensionless parameters Ω and ωcβ
(= ~ωc/kT , where we remind the reader that ~, set to 1, must be restored
in the final results). Interestingly, the results do not depend explicitly on
the energy gap parameter A, see (30). This illustrates the point that short-
time approximations do not capture the “resonant” relaxation processes,
but rather only account for “virtual” relaxation/decoherence processes dom-
inated by the low-frequency bath modes. However, the short-time approx-
imations of the type considered here are meaningful only for systems with
well-defined separation of the resonant vs. virtual decoherence processes,
i.e., for ~/A À 1/ωc. For such systems, ~/A = 1/A defines one of the “in-
termediate” time scales beyond which the approximation cannot be trusted.

As an example, we calculated a measure of deviation of a qubit from
a pure state in terms of the “linear entropy” [31, 33, 39],

s(t) = 1− Tr £ρ2 (t)¤ . (35)
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Figure 1 schematically illustrates the behavior of s(t) for different Ω
values, for the case ω−1c << β. The values of s(t) increase from zero, cor-
responding to a pure state, to 1/2, corresponding to a completely mixed
state, with superimposed oscillations. For Ohmic dissipation, three time
regimes can be identified [30]. The shortest time scale is set by t < O (1/ωc).
The quantum-fluctuation dominated regime corresponds to O (1/ωc) < t <
O (1/kT ). The thermal-fluctuation dominated regime is t > O (1/kT ). Our
short time approximation yields reasonable results in the first two regimes.
For t > O (1/kT ) it cannot correctly reproduce the process of thermaliza-
tion. Instead, it predicts approach to the maximally mixed state.

Figure 2: Comparison between the O(t2) expansion, i, and the short-time
approximation, ii.

Figure 2 corresponds to the parameter values typical for low temper-
atures and appropriate for quantum computing applications, ωcβ = 103,
with Ω = 1.5 · 10−7 chosen to represent weak enough coupling to the bath
to have the decoherence measure reach the threshold for fault-tolerance,
of order 10−6, for “gate” times well exceeding 1/ωc, here for ωct over 10.
The leading-order quadratic expansion in powers of the time variable t, the
validity of which is limited to t < O (1/ωc), is also shown for comparison.
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